Published online by Cambridge University Press: 17 March 2011
We have synthesized single crystal bismuth nanowires by pressure injecting molten Bi into anodic alumina templates. By varying the template fabrication conditions, nanowires with diameters ranging from 10 to 200nm and lengths of ~50[.proportional]m can be produced. We present a scheme for measuring the resistance of a single Bi nanowire using a 4-point measurement technique. The nanowires are found to have a 7nm thick oxide layer which causes very high contact resistance when electrodes are patterned on top of the nanowires. The oxide is found to be resilient to acid etching, but can be successfully reduced in high temperature hydrogen and ammonia environments. The reformation time of the oxide in air is found to be less than 1 minute. Focused ion beam milling is attempted as an alternate solution to oxide removal.