In this study, a comparison of the tensile behavior of fully nanotwinned Cu–6 wt.%Al, Cu–2 wt.%Al, and Cu–10 wt.%Ni with stacking fault energies (SFEs) of 6, 37, and 60 mJ/m2, respectively is presented. The samples displayed yield strengths ranging from 830 to 1340 MPa, varying with both alloy content and microstructural parameters. All samples showed low ductility, even though there are tilted twin boundaries present in Cu–10 wt.%Ni. The influence of varying grain width is presented for each alloy and related to both the activation volume and SFE [Figs. 3(a)–3(c)].