No CrossRef data available.
Published online by Cambridge University Press: 13 May 2025
Given a number field K, we show that certain K-integral representations of closed surface groups can be deformed to being Zariski dense while preserving many useful properties of the original representation. This generalises a method due to Long and Thistlethwaite who used it to show that thin surface groups in $\textrm{SL}(2k+1,\mathbf{Z})$ exist for all k.