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Abstract

Given a number field K, we show that certain K-integral representations of closed surface
groups can be deformed to being Zariski dense while preserving many useful properties of
the original representation. This generalises a method due to Long and Thistlethwaite who
used it to show that thin surface groups in SL(2k + 1, Z) exist for all k.
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1. Introduction

Thin groups are a class of groups which have a rich number of arithmetic properties that
have been of interest in recent years. Given a finitely generated subgroup � < GL(n, Z), we
let G denote its Zariski closure: G := Zcl(�). We say that the group � is thin if it is of infinite
index in G(Z) (see [24]). Tools used to study these groups, such as Super Approximation,
expander families and the affine sieve, have been rich areas of research that have seen a lot
of progress in the last 10–15 years (see [4] and [5]).

Despite the tools available, in general it is not well understood which groups can arise as
a thin subgroup of even SL(n, R). One large class of examples come from thin subgroups
of SL(n, Z) which are isomorphic to free groups. Such subgroups are even suitably generic,
providing many examples (see, for example, [9]). Much less well understood is subgroups
which are thin in SL(n, R) but do not decompose as a free product of two proper sub-
groups. In this paper, we seek to further understand ways in which one might construct freely
indecomposable thin subgroups of SL(n, R) through methods of low-dimensional topology.

We let S = Sg denote a connected, closed, orientable surface of genus g ≥ 2. Our goal will
be to use techniques available to us from higher Teichmüller theory to construct discrete and
faithful representations of π1(S) which are Zariski dense in SL(n, R), and contained in an
arithmetic group.

The starting point of this construction is to look at points on the Hitchin component of
S, which we denote by Hitn(S). These are components of the PSL(n, R)-character variety
of S, Rn(S), which contain the image of Teichmüller space under the map T (S) →Rn(S)
given by composing a Fuchsian representation ρ0 : π1(S) → PSL(2, R) with the irreducible
representation τn : PSL(2, R) → PSL(n, R). These components were studied by Hitchin in
[12] and later by Labourie in [16] where the authors showed that the representations on
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64 M. ZSHORNACK

these components had many of the same properties which were classical facts about rep-
resentations in Teichmüller space (which we briefly summarise in Section 2). In particular,
these properties of the Hitchin component ensure that the representations we construct will
be discrete, faithful and can be lifted to SL(n, R), thus providing a method for constructing
subgroups of the form we seek.

This method of producing Zariski dense surface subgroups of SL(n, R) originates in [19]
where the authors proved the existence of surface subgroups of SL(2k + 1, Z) for arbitrary
k ≥ 1 whose image was Zariski dense in SL(2k + 1, R). The starting point for their con-
struction is the representation coming from the hyperbolic structure on the orbifold with
signature S2(3, 4, 4) (which is unique up to conjugacy due to these orbifolds being rigid).
Direct calculation shows that the image of the representation coming from the holonomy
of this hyperbolic structure can be conjugated into SL(n, Z) after composing with τn for n
odd. The authors took this representation and utilised a bending construction of Thurston to
deform it so that, after passing to a surface subgroup of finite index, they were left with a
representation of a surface group into SL(2k + 1, Z) with Zariski dense image. Various tools
in the theory of Hitchin representations and the theory of algebraic groups were needed
in their proof to ensure this bending construction could be done while preserving certain
properties of the original representation, but this result provided the first examples of freely
indecomposable isomorphism classes of thin subgroups of SL(n, Z) for infinitely many n.

In this paper, we seek to generalise the methods used in [19] to show this process of
bending an integral representation to being Zariski dense can also be done in a much more
general context to produce more examples of Zariski dense subgroups of SL(n, R). For any
subring R ⊆ R, we will call a representation ρ : π1(S) → SL(n, R) an R-point of the character
variety if it can be conjugated in SL(n, R) to have image in SL(n, R). Throughout the rest
of this paper, we will let K/Q be a number field with ring of integers OK . We assume that
K ⊂ R (so in particular, K is not totally imaginary) and that K has class number one. The
class number one hypothesis is mainly for technical reasons and can perhaps be removed in
future work, but our main result is the following.

THEOREM 1·1. For any n ≥ 2, if Hitn(S) contains an OK point, then there is a finite sheeted
cover S̃ → S so that Hitn(̃S) contains an OK-point whose image is Zariski dense in SL(n, R).

Remark 1·2. When K �= Q, we prove an even stronger result (Theorem 4·4) that circumvents
the need to pass to a finite sheeted cover.

As a consequence of Theorem 1·1, we produce many examples of groups of the form
SL(n, OK) which contain Zariski dense surface subgroups. When K �= Q, these groups are
no longer lattices in SL(n, R) but are lattices in groups of the form SL(n, R)d. Therefore,
Theorem 1·1 also fits into the broader framework of understanding how surface groups
embed into lattices of semisimple Lie groups that has comprised much of low-dimensional
topology in the last 20 years. One of the first major results in this manner is the work of [14]
producing Zariski dense surface subgroups in every cocompact lattice of SL(2, C). Since
then, similar results for the non-cocompact lattices of SL(2, C) (see [7, 15]), other rank one
groups (see [11]) and complex Lie groups (see [13]) have been established. For SL(n, R),
in addition to the work of Long and Thistlethwaite for SL(2k + 1, Z), Audibert also used
similar methods to produce Zariski dense surface subgroups of many lattices of SL(n, R)
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Integral Zariski dense surface groups in SL(n, R) 65

(see [2, 3]). These last works, in tandem with the work of this paper, further highlight the
utility of using higher Teichmüller theory to address these surface subgroup questions.

At its core, the proof of Theorem 1·1 is a construction of a similar nature to the one
presented in [19] with some key modifications made at various steps to handle the slightly
more general setup. In addition to handling the even n case, this theorem utilises a slightly
different version of the bending construction more suited to the topology of S. These modifi-
cations also lend themselves to some other simplifications in the proof which we will discuss
later.

When we restrict Theorem 1·1 to the case where K = Q, we will be left with a repre-
sentation of π1(S) into SL(n, Z) with Zariski dense image in SL(n, R). The image also is
of infinite index in SL(n, Z) due to results of Margulis. Namely, since surface groups cer-
tainly surject onto Z, the image will automatically be of infinite index in SL(n, Z) hence
thin (see [20]). This representation will be on the Hitchin component, hence faithful, and
so the image will define a freely indecomposable thin sugroup of the form we wanted.
Therefore, Theorem 1·1 leads to the following useful corollary on the existence of freely
indecomposable thin subgroups of SL(n, R).

COROLLARY 1·3. If Hitn(S) contains a Zpoint, then SL(n, Z) contains a thin surface
subgroup.

Thus the problem of finding non-free thin subgroups of SL(n, R) can be reduced to finding
integral representations of surface groups on Hitchin components. Of course, finding such
representations still remains a difficult problem and at the time of writing, examples of these
are only known in the case where n = 2k + 1 is odd or n = 4.

2. Properties of Hitchin representations

The input to the construction used to prove Theorem 1·1 is a representation ρ : π1(S) →
PSL(n, OK) lying on the Hitchin component of Rn(S). We start with representations on such
components because they possess many useful properties akin to the representations in T (S).

THEOREM 2·1 (Labourie, [16]). If ρ : π1(S) → PSL(n, R) belongs to the Hitchin compo-
nent, it is discrete, faithful, purely loxodromic and strongly irreducible.

In this context, ρ is purely loxodromic if and only if for every non-identity element γ ∈
π1(S), ρ(γ ) is diagonalisable with real eigenvalues, all with distinct absolute values. We also
say ρ is strongly irreducible if the restriction of ρ to any finite index subgroup of π1(S) is
irreducible.

Alessandrini, Lee and Schaffhauser have also generalised the conclusions of Theorem 2·1
to also hold in the case where X is a compact, connected, hyperbolic 2-orbifold with
nonempty singular locus, and possibly with boundary. Their result ([1, theorem 2·28]) pro-
vides many of the same properties for non-closed surfaces which will be necessary for the
bending construction of Section 3.

The main utility of this theorem is that the bending process we use to deform ρ preserves
the path component ρ lies on in Rn(S). Thus as ρ originally lied on the Hitchin compo-
nent, then so will the bent representation, hence it will still be discrete, faithful and purely
loxodromic.
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66 M. ZSHORNACK

We may also circumvent the (mild) annoyance of having to work with projective matrices
due to the fact that representations in T (S) can be lifted to SL(2, R) and the fact that the
Hitchin component is connected. Namely, we have the following (8, theorem 4·1).

LEMMA 2·2. Let ρ : π1(S) → PSL(n, R) be a representation on the Hitchin component.
Then ρ admits a lift ρ̃ : π1(S) → SL(n, R). Moreover, for any nontrivial γ ∈ π1(S), the lift
ρ̃ can be chosen so that ρ̃(γ ) has distinct positive real eigenvalues.

For the rest of this paper, we will assume our starting representation on the Hitchin com-
ponent takes the form ρ : π1(S) → SL(n, OK). For convenience as well, whenever we fix
a nontrivial γ ∈ π1(S), we will assume we have chosen the lift of the representation so that
ρ(γ ) then also has distinct, positive real eigenvalues. Aside from just notational convenience,
these lifted representations will still be discrete and faithful due to being on the Hitchin com-
ponent and so their images will define non-free subgroups of SL(n, OK) of the form we wish
to study.

From this point, the goal will be to take the representation ρ and perform a series of
deformations so that, after possibly passing to a finite sheeted cover, we are left with a
representation of a surface group into SL(n, OK) which is Zariski dense in SL(n, R). The
following theorem will be crucial to establishing this result.

THEOREM 2·3 (Guichard, [10]). Let ρ : π1(S) → SL(n, R) be a lift of a representation on
the Hitchin component and let G be the Zariski closure of ρ(π1(S)). Then G is conjugate to
one of the following groups:

(i) τn(SL(2, R));

(ii) Sp(2k, R) if n = 2k is even;

(iii) SO(k + 1, k) if n = 2k + 1 is odd;

(iv) the image of the 7-dimensional fundamental representation of the short root of G2;

(v) SL(n, R).

Remark 2·4. An alternate proof of this same classification is also given in [23].

We will assume n �= 7 for simplicity so that the possible Zariski closures will only be
conjugate to options (i)–(iii) or (v) in the above list. From here, we will show that if the
Zariski closure of ρ(π1(S)) is one of (i)–(iii) in the above list, then there is a deformation of
ρ with the properties that it is: K-integral, on the Hitchin component and has a strictly larger
Zariski closure. By performing this deformation multiple times if necessary, we will be able
to guarantee that the Zariski closure at the final stage will be all of SL(n, R) hence define a
Zariski dense subgroup. Guichard’s classification of possible Zariski closures is also used
in this manner in [19], but also relies on a generalisation of the result to representations of
orbifold fundamental groups on Hitchin components found in [1].

3. Bending around nonseparating curves

We now describe the bending construction which will be used to deform the represen-
tations in order to successively enlarge the Zariski closures of the image. For our surface
S = Sg, we fix a nonseparating simple closed curve γ . We let S′ denote the compact surface
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Fig. 1. The setup for the bending construction.

one gets by cutting S along γ and denote by γ1 and γ2 the two boundary components of S′.
Up to some homeomorphism of S, we can suppose our setup is of the form in Figure 1.

In S, the curves γ , γ1 and γ2 will all be freely homotopic, and by an abuse of notation, we
will write γ1 and γ2 to denote the elements of π1(S′) and identify γ with γ1 in π1(S). In this
setup, it is known that π1(S) can be written as the following HNN extension:

π1(S) = π1(S′) ∗α := 〈π1(S′), α | αγ2α
−1 = γ1〉.

Given any representation ρ : π1(S) → SL(n, R) and any matrix A ∈ SL(n, R) in the cen-
traliser of ρ(γ ), we can define a new bent representation ρA : π1(S) → SL(n, R) by setting:

ρA|π1(S′) := ρ|π1(S′) and ρA(α) := Aρ(α).

With extra care for the choice of centralizing A, this bending procedure will also preserve a
number of useful properties of the original representation.

Firstly, if ρ has image in SL(n, OK) and we choose A in the OK-centralizer of ρ(γ ),
then it’s clear from the formula of the bend that ρA still has image inside of SL(n, OK).
So with additional care, the bending construction can be done in such a way as to preserve
K-integrality of the original representation.

Secondly, if we take care to choose A so that A = exp (X) for some diagonalizable X ∈
sl(n, R), then there is a one-parameter family of matrices given by

At := exp (tX) ∈ SL(n, R),

for t ∈ R. For this one-parameter family, we have that A0 = In, A1 = A. Moreover, by diago-
nalisability, for any t ∈ R At still centralises ρ(γ ). Note that we are using the fact that ρ(γ ) is
also diagonalisable as ρ lies on the Hitchin component to guarantee the matrices At all still
centralise ρ(γ ). But in particular, this one-parameter family of matrices At defines a path
of representations ρAt : π1(S) → SL(n, R) from ρA0 = ρ to ρA1 = ρA. Thus, ρA lies on the
same path component of Rn(S) as ρ. In particular, as ρ is a Hitchin representation, so is ρA.

So in short, many of the desired properties of the original representation can be preserved
by careful choice of the bending matrix A, used to deform ρ. However, bending construction
in this context is useful not just for its ability to preserve “nice” properties of our represen-
tations, but to “improve” them in the sense of producing representations with larger Zariski
closures. What ultimately enables this is the following.

LEMMA 3·1. Suppose ρ(π1(S)) has Zariski closure contained in G �= SL(n, R). If in addition
to the above properties, we choose A /∈ G, then the Zariski closure of ρA(π1(S)) is strictly
larger than G.
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68 M. ZSHORNACK

Proof. The Zariski closure of ρA(π1(S)) must still be among the ones of Theorem 2·3 as
ρA is still on the Hitchin component of S. A priori, it may be unclear why the image of ρA

might not be some nontrivial conjugate of G or a proper subgroup of it, but we can rule each
of these possibilities out as well, thus guaranteeing that the Zariski closure must indeed get
larger.

As G �= SL(n, R), consulting the list of Theorem 2·3, we see that either G is conjugate
to either τn(SL(2, R)), Sp(2k, R) or SO(k + 1, k). In the first case, ρA(π1(S)) can’t have a
smaller Zariski closure as no proper subgroup of τn(SL(2, R)) is a possible Zariski closure
for a Hitchin representation. In the latter two cases, it follows that there is some alternating or
symmetric bilinear form, J, which is preserved by the image of ρ. Basic calculations verify
that the image of SL(2, R) under the irreducible representation τn is contained in Sp(2k, R)
in the n even case and SO(k + 1, k) in the n odd case. Therefore, if ρA(π1(S)) had Zariski
closure smaller than G, then the it must be τn(SL(2, R)) in which case, the same form J is
still preserved. But this cannot be as A won’t preserve J by virtue of not being in G.

All that remains is to rule out why the Zariski closure of ρA(π1(S)) can’t be some non-
trivial conjugate of G. If this were the case, then there would be another non-degenerate
(symmetric or alternating) bilinear form J′ which is preserved by the image of ρA(π1(S)).
But now, observe that the representations ρ and ρA are identical on the compact subsurface
S′ ⊂ S. In particular, the image of the representation ρ|π1(S′) = ρA|π1(S′) preserves both the
forms J and J′.

As both J and J’ are preserved, J−1J′ρ(β) = ρ(β)J−1J′ for all β ∈ π1(S′). The subgroup
π1(S′) has Zariski closure at least containing an (absolutely irreducible) principal SL(2, R).
J−1J′ centralises all of this principal SL(2, R), hence by Schur’s lemma, is a homothety. In
particular, J and J’ are scalar multiples of one another and define the same orthogonal or
symplectic groups.

Thus the Zariski closure of ρA(π1(S)) cannot be a subgroup of, or a conjugate of G, and
thus must be strictly larger among the possibilities provided by Guichard’s list.

This lemma also highlights why we restrict to bends about nonseparating simple closed
curves. Given a separating simple closed curve, similar bending deformations can be defined
via a splitting of π1(S) as an amalgamated free product of the fundamental groups of each
component of the cut surface. However, in order to produce representations with strictly
larger Zariski closure by bending about a separating curve, one would instead need to choose
bending matrices A which lie outside the normaliser of the Zariski closure of the original
representation. This condition is more restrictive, hence the construction is easier in the
nonseparating case.

Theorem 1·1 is then proven by repeated applications of the bending constructions as
follows.

Proof of 1·1. We let ρ : π1(S) → SL(n, OK) be a representation on the Hitchin component
with Zariski closure G �= SL(n, R). By the various methods in Section 4 we can construct a
matrix A ∈ SL(n, OK) satisfying the following properties:

(a) A centralises ρ(γ ) for some nonseparating simple closed curve γ (after possibly
passing to a finite sheeted cover S̃ → S);
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(b) A /∈ G;

(c) A = exp (X) for some diagonalisable X ∈ sl(n, R).

From such a matrix, property (a) allows us to form the new bent representation ρA. By
property (b), along with Lemma 3·1, this also guarantees that ρA(π1(̃S)) has a larger Zariski
closure than G. ρA still remains on the Hitchin component of S̃ by property (c) as outlined
at the beginning of this section.

We can then repeat this process (at most twice, when n �= 7) until all of the finitely
many possible Zariski closures of Theorem 2·3 are ruled out except for SL(n, R) itself at
which point, the final representation must be Zariski dense, K-integral and on the Hitchin
component.

4. Constructing the bending matrices

To complete the proof of Theorem 1·1, it remains to be shown how one may construct the
matrices A satisfying each of properties (a)–(c) used in the proof. Different techniques for
constructing such a matrix are needed depending on the various possibilities of the initial
Zariski closure provided by Theorem 2·3 as well as the properties of the number field K.
Before we discuss the specific methods used to construct A in each case, we record the
following pair of useful lemmas here which will be used throughout.

LEMMA 4·1. Given M ∈ SL(n, K) whose characteristic polynomial is in OK[t], then there
is some j > 0 so that Mj ∈ SL(n, OK).

Proof. Using the rational canonical form of M, there is a P ∈ GL(n, K) so that M = PRP−1

where R ∈ SL(n, OK). Already here, we are implicitly using the hypothesis that K have class
number one to guarantee that R ∈ SL(n, OK). Namely, if f ∈OK[t] denotes the characteristic
polynomial of M, then a factorization of f into irreducibles over OK will be a factorisation
into irreducibles over K by Gauss’s lemma as OK is a UFD. Thus the invariant factors of f
can be guaranteed to all be in OK[t] as well and so the rational canonical form of f will have
entries in OK .

For any N ∈OK , we consider the reduction map SL(n, OK) → SL(n, OK/(N)).
SL(n, OK/(N)) is finite so there is some j so that Rj ≡ I (mod (N)). In other words, Rj =
I + NX for some X ∈ Mn(OK). In this case, we have that

Mj = P(I + NX)P−1 = I + NPXP−1.

In the above expression, the only term depending on N (other than N itself) is X, which
already has integral entries. Thus, if we pick N ∈OK so that it clears all the denominators
of all entries in P and P−1, we get that Mj ∈ SL(n, OK).

LEMMA 4·2. Suppose ρ(γ ) ∈ SL(n, OK) has characteristic polynomial f(t) where f ∈OK[t]
is irreducible over OK. Then there is some A ∈ SL(n, OK) centralizing ρ(γ ), not preserving
the form J and so that A = exp (X) for some diagonalisable X ∈ sl(n, R).

Proof. As f is irreducible over the UFD OK , it is irreducible over K. Let α ∈ K denote
some root of f and consider the extension K(α)/K. Note that [K(α) : K] = n as f must be the
minimal polynomial of α. All the roots of f must be distinct and real as ρ is on the Hitchin
component (2.1) and so K(α) has at least n real embeddings as we may extend the (fixed)
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70 M. ZSHORNACK

real embedding of K to one of K(α) by sending α to any of the other real roots of f . As a
consequence, the unit group O×

K(α) has rank ≥ n − 1.
By diagonalising ρ(γ ) over R and using the fact that it has distinct real eigenvalues, one

sees that the centralizer of ρ(γ ) in SO(J; R) has rank n
2 . In comparison, O×

K(α) has rank
≥ n − 1. Then n − 1 > n/2 as long as n > 2.

Note then that there is a K-algebra isomorphism

K(α) ∼= K[ρ(γ )]

sending α �→ ρ(γ ) because both of the above algebras are isomorphic to K[t]/(f ) for the
monic irreducible f ∈OK[t]. Consider now, the image of O×

K(α) in K[ρ(γ )]. By the above

rank considerations, there is some infinite order u ∈O×
K(α) whose image, A′ ∈ K[ρ(γ )], sat-

isfies the property that no power of A′ preserves the form J. Further assume that u > 0 by
replacing u with −u if necessary. A′ is a polynomial in powers of ρ(γ ) and so A’ itself will
still centralise ρ(γ ).

At the moment, A’ still has some possibly undesirable properties, but we will modify it
to construct the matrix A. First, note A’ has characteristic polynomial in OK[t]: its charac-
teristic polynomial factors as

∏n
i=1 (t − uσi) where the σi : K(α) → C are the K-embeddings

of K(α). The determinant of A’ at the moment is v = NormK(α)/K(u) ∈O×
K , but we may pass

to a higher power of A’ and rescale by some power of v−1 so that A’ has determinant 1.
This power of A’ then has characteristic polynomial in OK[t] and is in SL(n, K), hence by
Lemma 4·1, some further suitable power will have entries in OK . Taking A = (A′)j to be such
a large enough power, we get A ∈ SL(n, OK).

This matrix A = (A′)j ∈ SL(n, OK) still centralises ρ(γ ) and does not preserve the form
J as no power of A’ preserves J by construction. Furthermore, such an A will be the
exponential of some diagonalisable matrix as we arranged for u > 0 and as A’ is a poly-
nomial in powers of ρ(γ ), all of which are the exponential of some diagonal matrix by
Theorem 2·1.

Remark 4·3. In the odd-dimensional case, for non-Zariski dense ρ, the characteristic poly-
nomials of the ρ(γ ) are never irreducible over OK as they always have an eigenvalue of 1,
due to being on the Hitchin component. Nonetheless, the same conclusion of this lemma can
easily be adopted to the odd-dimensional case if we find ρ(γ ) with characteristic polynomial
of the form (t − 1)f (t) for some f (t) ∈OK[t] irreducible over OK since we may conjugate
ρ(γ ) to be in block diagonal form with an (n − 1) × (n − 1)-block along the diagonal. In this
case, applying this result to this block gives the bending matrix A in the odd-dimensional
case.

This lemma provides sufficient conditions for which the bending matrix A used in the
proof of Theorem 1·1 will exist. This implies that to construct a bending matrix, it suffices
to find a nonseparating simple closed curve γ ∈ π1(S) whose characteristic polynomials are
of the form f (t) or (t − 1)f (t) for some irreducible f (t) in OK[t]. When such γ cannot be
found, we then use the reducibility of the characteristic polynomials to explicitly construct
bending matrices we may use as well. The methods used in constructing these matrices vary
depending on what the input to the bend is, particularly, what the number field K is, and
what the Zariski closure of the initial representation ρ(π1(S)) is.
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4·1. Bending when K �= Q

The simplest case of the bending procedure occurs when K is a proper extension of Q
with class number one. In this case, we are able to prove the following strengthening of
Theorem 1·1.

THEOREM 4·4. If K �= Q and ρ : π1(S) → SL(n, OK) is a representation on the Hitchin
component whose image is not Zariski dense, then for any nonseparating simple closed
curve γ ∈ π1(S), there is an A ∈ SL(n, OK) centralizing ρ(γ ) so that the bent representation
ρA is on the Hitchin component and has Zariski dense image.

In comparison to Theorem 1·1, when K �= Q, we are able to ensure the representation is
Zariski dense while circumventing the need to pass to any finite sheeted covers. The class
number one hypothesis enables various integrality properties to be preserved, but the proof
of this result is ultimately enabled by the presence of infinite order units in OK allowing one
to construct the bending matrix A explicitly.

Proof of 4·4. For any nonseparating simple closed γ ∈ π1(S), we consider the characteristic
polynomial f , of ρ(γ ). If f is irreducible, then we take the matrix A to be the one guaranteed
by Lemma 4·2. As A doesn’t preserve the (unique) form J which ρ(π1(S)) must preserve (as
in Lemma 3·1), then ρA(π1(S)) must have Zariski closure larger than SO(J; R) or Sp(J; R)
and so it must be Zariski dense by Theorem 2·3.

Thus we may assume that f is reducible over OK . It suffices to assume that f = f1f2 for fi ∈
OK[t] of degree n1, n2 ≥ 1 respectively. Replacing f1 and f2 with uf1 and u−1f2 for some unit
u ∈O×

K if necessary, we may also assume that f1 and f2 are monic and have constant terms
(−1)n1 and (−1)n2 respectively. From the factorisation of the characteristic polynomial, there
is some matrix P ∈ GL(n, K) so that

Pρ(γ )P−1 =
(

C1

C2

)
where for i = 1, 2, Ci ∈ SL(ni, OK) has characteristic polynomial fi. Here, we are using the
fact that the factorization of f is over OK and that K has class number one to guarantee that
the entries of the Ci are indeed in OK , as in the proof of Lemma 4·1.

Now, as K �= Q, [K : Q] > 1. Assuming K ⊂ R also forces K to have ≥ 1 real embeddings,
and together, this forces O×

K to have rank ≥ 1. We may thus fix an infinite order unit u ∈O×
K

and, replacing u with −u if necessary, we may also assume that u > 0.
In this case, we take the matrix

A′ := P−1
(

un2In1

u−n1C2

)
P.

A′ ∈ SL(n, K) has characteristic polynomial still in OK[t] and clearly centralizes ρ(γ ) due
to PA′P−1 having the same block-diagonal structure as Pρ(γ )P−1. As u > 0 and C2 is diag-
onalisable, A′ = exp (X) for some diagonalisable X ∈ sl(n, R) as well. Note as well that A′
does not preserve the form J as its eigenvalues are un2 (with multiplicity n1) and u−n1λ

where λ is any of the (distinct, real) eigenvalues of C2, and these eigenvalues do not pair up
as needed for any matrix preserving the form J.

Passing to a higher power of A’ by Lemma 4·1, A = (A′) j ∈ SL(n, OK) for sufficiently
large j still centralises ρ(γ ) and remains the exponential of some diagonalisable matrix.
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As u is an infinite order unit, A will still fail to preserve the form J as A′ did. Therefore, by
Lemma 3·1, the bent representation ρA has Zariski dense image.

By handling the K �= Q case separately using the presence of infinite order units in OK ,
we may then assume that K = Q and OK = Z for the remainder of this section.

4·2. Bending out of a principal SL(2, R)

When K = Q, no infinite order units are present and so an alternate method is necessary.
The overall construction of the bending matrices here is then a two-fold process: one to bend
the representation out of a principal SL(2, R) and a second to bend the representation out
of either Sp(2k, R) or SO(k + 1, k) to finally get a representation with Zariski dense image
in SL(n, R). Different methods are used for each bend, the simpler one when the Zariski
closure of ρ(π1(S)) is “as small as possible.”

By Theorem 2·3, the smallest possible Zariski closure that our representation might have
is that of a principal SL(2, R) inside of SL(n, R). So suppose that ρ : π1(S) → SL(n, Z) has
Zariski closure conjugate to τn(SL(2, R)). In this case, we start by fixing any nonseparating
simple closed curve γ ∈ π1(S).

By Theorem 2·1, ρ(γ ) is diagonalisable with distinct real eigenvalues. Moreover, as
ρ(π1(S)) is contained in some principal SL(2, R), basic properties about the irreducible rep-
resentations of SL(2, R) tell us that the eigenvalues of ρ(γ ) are of the form λn−2i−1 for
i = 0, . . . , n − 1. In this case, the characteristic polynomial of ρ(γ ) is of the form (t − 1)f (t)
or f (t) for some f ∈ Z[t] depending on the parity of n. If f (t) is irreducible in either of the
above cases, we again apply Lemma 4·2 to construct the matrix A (in the n odd case, we
proceed as in the remark after Lemma 4·2). Consequently, the matrix A provided by this
theorem does not preserve the form this principal SL(2, R) does, and so ρA will then have
Zariski dense image. So just as with the K �= Q construction, we are able to guarantee the
representation has Zariski dense image after a single bend, if we can find a γ ∈ π1(S) with
this property.

What remains in this case is when f (t) is reducible over Z. That is, we may assume the
characteristic polynomial of ρ(γ ) admits a factorisation of the form

(t − 1)f1(t)f2(t) or f1(t)f2(t),

for polynomials f1, f2 ∈ Z[t] of degree n1, n2 ≥ 1 respectively. From the factorization of
the characteristic polynomial, it follows then that there is some matrix P ∈ GL(n, Q)
so that

Pρ(γ )P−1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝1

C1

C2

⎞⎟⎠ if n is odd

(
C1

C2

)
if n is even,

where for i = 1 or 2, Ci ∈ SL(ni, Z) has characteristic polynomial fi. We now take A′ to be
the matrix
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A′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
P−1

⎛⎜⎝1

In1

C2

⎞⎟⎠ P if n is odd

P−1

(
In1

C2

)
P if n is even.

Note that in both cases, det (A′) = det (C2) = 1 and A’ is in the Q-centraliser of ρ(γ ).
By Lemma 4·1 there is some j > 0 so that (A′)j has entries in Z. We take A = (A′)j. Then

by construction, A ∈ SL(n, Z) centralises ρ(γ ). Moreover, A is not contained in a princi-
pal SL(2, R) because the eigenvalues of A are not of the form μn−2i−1 for some μ ∈ R
since A has an eigenvalue 1 of multiplicity > 1. Finally, we show that A is in the image of
the exponential map. For this, it suffices to show A′ = exp (X) for some X ∈ sl(n, R) since
then, A = (A′)j = exp (jX). In this case, if we let λ1, . . . , λn2 be the distinct positive real
eigenvalues of C2, then C2 is diagonalisable over R and we have that

A′ = Q−1 exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .

0
log (λ1)

. . .

log (λn2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Q

for some Q ∈ GL(n, R). Moreover, det (C2) = 1 so that the trace of the above matrix is 0,
hence A′ = exp (X) for some diagonalisable X ∈ sl(n, R).

As a result, the matrix A centralising ρ(γ ) can be used to bend the representation ρ and
produce a representation ρA : π1(S) → SL(n, Z) on the Hitchin component with Zariski clo-
sure strictly larger than a principal SL(2, R). At this point, the resulting bent representation
may still have Zariski closure conjugate to SO(k + 1, k) or Sp(2k, R) when n = 2k + 1 or
n = 2k respectively. Thus another bend is still necessary to guarantee that one may produce
a final representation with Zariski dense image.

4·3. Bending out of Sp(2k, R)

We handle the even case first which follows the same general strategy as the bend out of
SO(k + 1, k), but is practically easier, due to facts about symplectic groups which simplify
various steps. Assume that ρ : π1(S) → SL(2k, Z) has Zariski closure Sp(2k, R). The starting
point is the following Strong Approximation result from the theory of algebraic groups.

THEOREM 4·5 (Matthews et al., [21]). Let G be a connected simply-connected absolutely
almost simple algebraic group defined over Q and � � G(Q) a finitely generated Zariski
dense subgroup.

Then for all but finitely many primes p, the reduction map

πp:� → G(Fp)

is onto.
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We will also need the following result, attributed to Borel ([6, theorem 3·5 and
corollary 3·6]).

THEOREM 4·6 (Borel, cf. [6]). Let p > 4 and let Rp(2k) be the set of 2k × 2k matrices in
Sp(2k, Fp) with reducible characteristic polynomial. Then

|Rp(2k)| ≤
(

1 − 1

3k

)
|Sp(2k, Fp)|.

By Theorem 4·5 for G = Sp(2k) and � = ρ(π1(S)), we obtain a surjection

πp ◦ ρ : π1(S) � Sp(2k, Fp),

for some prime p which, when combined with Theorem 4.6, implies there exists some
loop η ∈ π1(S) so that the characteristic polynomial of πp(ρ(η)) is irreducible modulo p.
Consequently, ρ(η) has characteristic polynomial irreducible over Z. Now, at the moment,
this loop may not be simple, but the following result allows us to remedy this.

THEOREM 4·7 (Scott, [25]). Every closed curve on S lifts to a simple closed curve in some
finite-sheeted cover.

We now pass to a finite sheeted cover S̃ → S where η lifts simply and restrict our repre-
sentation ρ, to the subgroup π1(̃S) � π1(S). By passing to a further finite sheeted cover if
needed, we may also assume that the loop η ∈ π1(̃S) is nonseparating. The following lemma
is needed before then performing the bend out of Sp(2k, R).

LEMMA 4·8. The subgroup ρ(π1(̃S)) � ρ(π1(S)) has Zariski closure Sp(2k, R).

Proof. Let H denote the Zariski closure of ρ(π1(̃S)). Clearly H � Sp(2k, R), but as S̃ is still
a closed surface and ρ|π1(̃S) lies on the Hitchin component of S̃, Guichard’s classification
(Theorem 2·3) implies that either H = Sp(2k, R) or H is a principal SL(2, R).

But H is of finite index in G, so if g1, . . . , gk are finitely many coset representatives for
G/H, then g1H ∪ . . . ∪ gkH is a Zariski-closed subset containing G. If H was a principal
SL(2, R), this would imply that Sp(2k, R) is a union of finitely many principal SL(2, R)’s
and simply for dimension reasons this is even impossible.

By this lemma, we have a representation ρ : π1(̃S) → SL(n, Z) which is Zariski dense in
Sp(2k, R) and on the Hitchin component of S̃. Moreover, the curve η ∈ π1(S) lifts simply in
S̃ and the characteristic polynomial of η is irreducible over Z. In light of Lemma 4·2, there
is some bending matrix A ∈ SL(n, Z) so that the bent representation ρA is Zariski dense in
SL(n, R).

4·4. Bending out of SO(k + 1, k)

In the odd n case, the only possible representations remaining are the Q-integral ones
with Zariski closure conjugate to SO(k + 1, k). Suppose that ρ : π1(S) → SL(2k + 1, Z) has
Zariski closure SO(J; R) where J is some symmetric bilinear form of signature (k + 1, k). In
this case, we prove the following fact.

LEMMA 4·9. There exists a η ∈ π1(S) so that ρ(η) has characteristic polynomial
(t − 1)f (t) ∈ Z[t] with f(t) irreducible over Z.
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The required loop is constructed in essentially the same manner as done in
[19, section 3·2], but we recap the construction, and note the minor differences here. Again,
the first step will be to look at the reduction map SO(J, Z) → SO(J, Fp) for some prime
p. In this case, over odd-dimensional vector spaces over finite fields, there is a unique
orthogonal group up to isomorphism, dependent only on the dimension and the prime p
[26, theorem 5·8]. Thus we will make the identification O(J, Fp) = O(2k + 1, p). In this
case, we let SO(2k + 1, p) denote the (unique up to isomorphism) special orthogonal
group over Fp and also set �(2k + 1, p) = [O(2k + 1, p), O(2k + 1, p)] � SO(2k + 1, p) to
be the commutator subgroup. �(2k + 1, p) is a simple subgroup of index 4 in O(2k + 1, p)
(cf. [26], p. 383–384).

Just as in Section 4.3, the curve in Lemma 4·9 with the required characteristic polyno-
mial will be constructed by looking at the characteristic polynomials modulo some prime p.
However, we can’t simply apply Strong Approximation as is stated in Theorem 4·5 simply
due to the fact that the algebraic group SO(J) is not simply connected. Instead, the following
corollary of Strong Approximation (cf. [27]) still provides us with enough in the image of
the reduction map to construct the needed η.

THEOREM 4·10. For all but finitely many primes p, the image of the composition

πp ◦ ρ : π1(S) → SO(2k + 1, p)

contains the subgroup �(2k + 1, p).

Lemma 4·9 then follows immediately from the previous theorem and the following result
whose proof is [19 theorem 3.8].

LEMMA 4·11. For every prime p, there is a matrix in �(2k + 1, p) with a characteristic
polynomial of the form (t − 1)f (t) where f is irreducible modulo p.

By these last two results, we may find some η ∈ π1(S) so that πp(ρ(η)) has characteristic
polynomial of the form (t − 1)f (t) for some f irreducible modulo p. It follows that ρ(η) has
characteristic polynomial of the form (t − 1)f (t) for some f irreducible over Z. As before, η

may not be simple, but Theorem 4·7 again lets us pass to a finite sheeted cover S̃ → S where
η lifts simply to a nonseparating curve. Again, as in Lemma 4.8, ρ(π1(̃S)) � ρ(π1(S)) also
has Zariski closure SO(J; R) and so we may perform the bend on the restriction ρ : π1(̃S) →
SL(n, Z), along the simple closed curve η, to get a representation ρA:π1(̃S) → SL(n, Z) with
Zariski dense image in SL(n, R) via Lemma 4·2. This last remaining case then completes
the proof of Theorem 1·1.

5. Applications

The methods of this paper also have a number of useful consequences and applications.
We record some of these here.

COROLLARY 5·1. If Hitn(S) contains an OK-point, then there are infinitely many OK-points
in Hitn(S) which are Zariski dense.

Proof. This mainly is a consequence of the fact that the construction of the bending matrices
A rely on a number of arbitrary choices made, and any difference in these choices lead
to different Zariski dense representations of π1(S). For instance, if A is a bending matrix
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satisfying properties (a)–(c) used in the proof of Theorem 1·1, then so is Am for any integer
m ≥ 1, and hence ρAm

are all alternative bends of ρ with Zariski dense image. Pairwise
non-conjugacy of this family of Zariski dense representations also follows by an argument
similar to the one given in Lemma 3·1 using Schur’s lemma, leveraging the fact that the
family of bends {ρAm}∞m=1 all agree on the subgroup of the cut subsurface, π1(S′), whose
Zariski closure contains a principal SL(2, R).

Additionally, in the setting of Section 4.1, the construction works for any nonseparating
simple closed curve on S, and so for each curve, different Zariski dense surface groups may
be produced.

Other interesting questions in these directions still remain. For instance, one would aim
to more precisely quantify how many “distinct” surface subgroups of SL(n, OK) exist.
For instance, whether or not this construction produces infinitely many commensurability
classes of such subgroups considered up to conjugation is unknown. This is answered in [17]
for representations into cocompact lattices of SL(3, R) where the authors deduce the exis-
tence of an infinite family of thin surface subgroups which are pairwise non-commensurable
up to conjugacy by showing the subgroups in their family have projectively distinct limit
sets. For general n, the associated limit set may be studied in terms of the hyperconvex Frenet
curve ξρ : ∂∞π1(S) → Flag(Rn) associated to any Hitchin representation ρ, first introduced
in [16]. It is not difficult to show that generically, the family of bends {ρAm}∞m=1 produces
representations whose flag curves are distinct, i.e. the functions ξ

ρAj and ξ
ρAk are distinct

whenever j �= k. Full non-commensurability up to conjugacy would require showing that
these flag curves have distinct images, up to the action of SL(n, R), which remains unknown
beyond the aforementioned result of [17].

We close with some known examples of representations this bending construction can be
applied to.

(1) The (3,4,4)-triangle group, �(3, 4, 4), is the fundamental group of the orbifold
with signature S2(3, 4, 4). Using the presentation �(3, 4, 4) = 〈α, β, γ | α3 = β4 =
γ 4 = αβγ = 1〉, the representation realizing the (unique up to conjugacy) hyperbolic
structure on this orbifold is given by:

ρ(α) =
(

0 −1
1 1

)
,

ρ(β) =
(

0 −1 − √
2

−1 + √
2

√
2

)
,

ρ(γ ) =
(

1 − √
2 −√

2
−1 + √

2 −1

)
.

In [19] (Theorem 2.1), the authors show that, when composing with the irreducible
representation τn : SL(2, R) → SL(n, R), τnρ can be conjugated to have image inside
SL(n, Z) when n is odd, or SL(n, Z[

√
2]) when n is even (note: Z[

√
2] =OQ(

√
2) is a

PID).
�(3, 4, 4) contains a torsion-free subgroup of finite-index which is the fundamental
group of some closed surface: π1(S) ��(3, 4, 4). Restricting this representation of
�(3, 4, 4) to one of π1(S), we see that Hitchin component of S therefore contains a
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Z-point or a Z[
√

2]-point depending on the parity of n, and so can be bent to being
Zariski dense.

(2) More generally, for � < SL(2, R) a cocompact arithmetic Fuchsian group, � <

SL(2, OK) for some number field K. When K is totally real and has class number one,
we may run the above construction on a torsion-free subgroup of τn(�) < SL(n, OK)
to produce Zariski dense surface subgroups of other groups (note: the irreducible
embedding, τn, can be defined over Z, hence takes SL(2, OK) into SL(n, OK)). See,
for instance, [22, example 6·3·2] for constructions of arithmetic Fuchsian subgroups
of SL(2, OK) various totally real K aside from Q(

√
2).

(3) Examples of Q-integral even-dimensional Hitchin representations are largely
unknown. At the moment of writing, such examples are only known when n = 4. Long
and Thistlethwaite provided such examples of Hitchin representations into SL(4, Z)
in [18]: one coming from an infinite family of representations of the triangle group
�(3, 3, 4), along with one of the triangle group �(2, 4, 5). These methods then pro-
vide an alternate proof of the results of the aforementioned paper, giving Zariski dense
surface subgroups in SL(4, Z), but additional examples for SL(2k, Z) when k > 2 are
still unknown.
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