Hostname: page-component-5b777bbd6c-cp4x8 Total loading time: 0 Render date: 2025-06-18T13:44:58.788Z Has data issue: false hasContentIssue false

Annihilating class groups in p-elementary abelian extensions

Published online by Cambridge University Press:  19 May 2025

DOMINIK BULLACH
Affiliation:
University College London, Department of Mathematics, 25 Gordon Street, London WC1H 0AY, United Kingdom. e-mail: dominik.bullach@ucl.ac.uk
DANIEL MACÍAS CASTILLO
Affiliation:
Instituto de Ciencias Matemáticas,c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain. e-mail: daniel.macias@icmat.es
Rights & Permissions [Opens in a new window]

Abstract

We derive new cases of conjectures of Rubin and of Burns–Kurihara–Sano concerning derivatives of Dirichlet L-series at $s = 0$ in p-elementary abelian extensions of number fields for arbitrary prime numbers p. In naturally arising examples of such extensions one therefore obtains annihilators of class groups from S-truncated Dirichlet L-series for ‘large-enough’ sets of places S.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

1. Introduction

1·1. Dirichlet L-series at $s = 0$ and annihilation of class groups

Stark’s conjecture predicts a description for the leading term of a general Artin L-series at $s = 0$ up to an unspecified rational factor. Formulating an integral refinement of this conjecture turned out to be a delicate task that Stark himself, in [ Reference Stark54 ], only found a solution to in the case that the order of vanishing of the L-series at $s = 0$ is one. Initial generalisations to higher orders of vanishing, for example the ‘question’ of Stark in [ Reference Grant29 , Reference Tangedal55 ] or a conjecture of Sands [ Reference Sands50 , Conjecture 2·0], were subsequently shown to not hold in general by Rubin [ Reference Rubin48 , Section 4] and Popescu [ Reference Popescu47 ]. Instead, Rubin proposed in loc. cit. what is now commonly referred to as the ‘Rubin–Stark conjecture’.

Going beyond mere integrality, it is expected that this unspecified factor encodes important arithmetic information and, in particular, is linked to the Galois module structure of class groups. The primordial example of this phenomenon is Stickelberger’s theorem from the 19th century, which asserts that the ideal class group of a cyclotomic field is annihilated by a certain element valued in the group ring over the relevant Galois group and constructed from values of Dirichlet L-series at $s = 0$ . The analogous annihilation statement for class groups of finite abelian CM extensions of totally real fields is known as the ‘Brumer–Stark conjecture’ and has very recently been settled by Dasgupta and Kakde [ Reference Dasgupta and Kakde21 ] with additional arguments by Dasgupta, Kakde, Silliman and Wang [ Reference Dasgupta, Kakde, Silliman and Wang23 ]. In certain situations, these results can even be extended to non-abelian CM extensions, see [ Reference Burns and Johnston16 , Reference Ellerbrock and Nickel26 , Reference Johnston and Nickel33 ].

However, outside the setting of totally imaginary extensions of totally real fields the values of the associated Dirichlet L-series at $s = 0$ usually vanish (the only exception being the case considered by Nomura in [ Reference Nomura45 ]) and so naive generalisations of Stickelberger’s theorem become trivial. This led Burns to formulate the question whether in such cases one can instead use higher derivatives of Dirichlet L-series to produce annihilators of class groups (see [ Reference Macías Castillo37 , Question 1·1]) and similar aspects have also been considered by Buckingham [ Reference Buckingham7 , Reference Buckingham8 ].

In this article, we prove new results on the Rubin–Stark conjecture and, moreover, on the annihilation of class groups, in cases of higher orders of vanishing. Indeed, in Theorem 1·1 we extend annihilation results concerning multi-quadratic extensions by Sands [ Reference Sands52 ] and the second author [ Reference Macías Castillo37 ] to general p-elementary abelian extensions $K/k$ of number fields, for arbitrary prime numbers p. This result is conditional on the collection of subextensions $L/k$ of $K/k$ that have degree p validating a conjecture of Burns, Kurihara and Sano (which we recall as Conjecture 1·10). Since we are then also able, in Theorem 1·3, to prove new cases of the Burns–Kurihara–Sano conjecture, we derive a method of systematically producing examples in which the annihilation claim of Theorem 1·1 is valid unconditionally (see Corollary 1·8).

1·2. Statements of the main results

To describe our results in more detail, we fix a finite abelian extension of number fields $K / k$ with Galois group $G \,{:\!=}\, \mathrm{Gal}({K}/{k})$ and, following Rubin [ Reference Rubin48 , Hypothesis 2·1], a triple (S, V, T) of finite sets of places of k with the following properties:

  1. (H1) S contains both the set $S_\infty$ of infinite places of k and the places that ramify in K;

  2. (H2) $V \subsetneq S$ is a proper subset comprising places which split completely in $K / k$ ;

  3. (H3) T is disjoint from S and such that the group $\mathcal{O}^\times_{K, S, T} \,{:\!=}\, \{ a \in K^\times \mid {\mathrm{ord}}_w (a) = 0 \text{ if } w \not \in S_K, {\mathrm{ord}}_w (a - 1) \gt 0 \text{ if } w \in T_K \}$ is ${\mathbb{Z}}$ -torsion free. (Here $S_K$ and $T_K$ denote the sets of places of K that lie above those in S and T, respectively, and ${\mathrm{ord}}_w$ is the normalised valuation attached to w.)

We refer to such a triple (S, V, T) as a ‘Rubin datum’ for $K / k$ . For any Rubin datum and character $\chi$ in $\widehat{G} \,{:\!=}\, \mathrm{Hom}_{\mathbb{Z}} (G, {\mathbb{C}}^\times)$ , the (S-truncated, T-modified) Dirichlet L-series

\[L_{k, S, T} (\chi, s) \,{:\!=}\, \prod_{v \in T} (1 - \chi ({\mathrm{Frob}}_v)\mathrm{N} v^{1 - s} ) \cdot \prod_{v \not \in S} (1 - \chi ({\mathrm{Frob}}_v) \mathrm{N}v^{-s})^{-1}\quad \text{ if } \mathrm{Re}(s) \gt 1\]

is known to admit a meromorphic continuation to ${\mathbb{C}}$ that is holomorphic and of order of vanishing at least $|V|$ at $s = 0$ (cf. [ Reference Tate56 , Chapter I, Proposition 3·4]). We may therefore define the ( $|V|$ -th order) ‘Stickelberger element’

\[\theta_{K / k, S, T}^{(|V|)} (0) \,{:\!=}\, \sum_{\chi \in \widehat{G}} \big( \lim_{s \to 0} s^{-|V|} L_{k, S, T} (\chi^{-1}, s) \big) \cdot e_{\chi},\]

with $e_\chi \,{:\!=}\, |G|^{-1} \sum_{\sigma \in G} \chi (\sigma)^{-1} \sigma$ the usual primitive orthogonal idempotent in ${\mathbb{C}} [G]$ associated with $\chi$ . In addition, we define $X_{K, S} \subseteq Y_{K, S} \,{:\!=}\, \bigoplus_{w \in S_K} {\mathbb{Z}} w$ to be the ${\mathbb{Z}} [G]$ -submodule of elements whose coefficients sum to zero, and denote the Dirichlet regulator isomorphism by

(1·1) \begin{equation} \lambda_{K, S} {\colon} {\mathbb{R}} \otimes_{\mathbb{Z}} \mathcal{O}_{K, S}^\times \stackrel{\simeq}{\longrightarrow} {\mathbb{R}} \otimes_{\mathbb{Z}} X_{K, S},\quad x \otimes a \mapsto - x \sum_{w \in S_K} \log | a|_w \cdot w.\end{equation}

The Rubin–Stark conjecture [ Reference Rubin48 , Conjecture B’] now predicts, via the reinterpretation given in Lemma 2·2 below, that for every homomorphism of $\mathbb{Z}[G]$ -modules $f {\colon} \mathcal{O}_{K, S, T}^\times \to X_{K, S}$ one has

(1·2) \begin{equation}\theta_{K / k, S, T}^{(|V|)} (0) \cdot {\det}_{{\mathbb{R}} [G]} (f_\mathbb{R}\circ \lambda_{K, S}^{-1})\in {\mathbb{Z}} [G]\end{equation}

with $f_\mathbb{R}$ the scalar extension ${\mathbb{R}}\otimes_{\mathbb{Z}} f{\colon}{\mathbb{R}} \otimes_{\mathbb{Z}} \mathcal{O}_{K, S}^\times={\mathbb{R}} \otimes_{\mathbb{Z}} \mathcal{O}_{K, S,T}^\times\longrightarrow\mathbb{R}\otimes_\mathbb{Z} X_{K,S}$ of f. In addition, it is expected that the element in (1·2) annihilates the $S_K$ -class group of K (cf. [ Reference Burns13 , Conjecture 2·4·1] or [ Reference Macías Castillo37 , Question 1·1]). Here we study a refinement of this question that instead considers the $S_K$ -ray class group ${\mathrm{Cl}}_{K, S, T}$ of K mod $T_K$ (defined as the quotient of the group of fractional ideals of ${\mathcal{O}}_{K, S}$ coprime to $T_K$ , by the subgroup of principal ideals with a generator congruent to 1 modulo all $w \in T_K$ ).

To state our first main result in this direction we fix a prime number p, consider a p-elementary abelian extension $K/k$ and write $\Omega$ for the set of degree-p subextensions $L/k$ of $K/k$ .

Theorem 1·1. Let $K / k$ be a p-elementary abelian extension of number fields of degree $p^m$ and fix a Rubin datum (S, V, T) for $K / k$ that satisfies

\[|S| \geq \max \{ |V| + 2, |V| - s_p + (p - 1)(m - 1) + 3\},\]

where $s_p \,{:\!=}\, \dim_{\mathbb{F}_p} ({\mathrm{Cl}}_{k, S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p)$ denotes the p-rank of the S-ray class group mod T of k.

If for all subextensions $L / k$ in $\Omega$ the Burns–Kurihara–Sano conjecture [ Reference Burns, Kurihara and Sano17 , Conjecture 7·3] is valid for $(L/k,S,V,T)$ , then

\[\big \{ \theta_{K / k, S, T}^{(|V|)} (0) \cdot {\det}_{{\mathbb{R}} [G]} ( f_\mathbb{R}\circ \lambda_{K, S}^{-1} ) \mid f \in \mathrm{Hom}_{{\mathbb{Z}} [G]} ( \mathcal{O}_{K, S, T}^\times, X_{K, S}) \big \}\,\,\subseteq\,\, \mathrm{Ann}_{{\mathbb{Z}} [G]} ({\mathrm{Cl}}_{K, S, T}).\]

In particular, the Rubin–Stark conjecture is valid for $(K/k,S,V,T)$ .

Remark 1·2. If $p = 2$ , then each subextension in $\Omega$ is quadratic and Theorem 1·1 is unconditional (see Remark 1·11 (d)) and recovers results of Sands [ Reference Sands51 , Theorem 2·2] on the Rubin–Stark conjecture and of Sands [ Reference Sands52 , Main theorem] and the second author [ Reference Macías Castillo37 , Theorem 1·4] on the annihilation of class groups.

To prove Theorem 1·1 (in Section 4) we first deduce in Lemma 4·2 the validity of the Rubin–Stark conjecture for $K / k$ from the assumed validity of conjecture [ Reference Burns, Kurihara and Sano17 , Conjecture 7·3] for all subextensions in $\Omega$ . The annihilation statement in Theorem 1·1 is then deduced from this by varying the Rubin datum in combination with Cebotarev’s density theorem, as in the theory of ‘Stark systems’ (see, for example, [ Reference Burns, Sakamoto and Sano18 , Section 4]). Although this latter aspect of the argument is of a general nature, we prefer to focus on the concrete situation of Theorem 1·1 in this article and to discuss the general formalism elsewhere.

As our second main result, we prove new cases of the Burns–Kurihara–Sano conjecture.

Theorem 1·3. Let $K / k$ be an extension of number fields of one of the following forms:

  1. (i) There exists a prime-power q and a subfield $\kappa$ of k such that $K / \kappa$ is a Galois extension with Galois group isomorphic to the group ${\mathrm{Aff}} (q)$ of affine transformations of the field $\mathbb{F}_q$ with q elements, and $G = \mathrm{Gal}({K}/{k})$ is the unique subgroup of order q of $\mathrm{Gal}({K}/{\kappa})$ .

  2. (ii) $K / k$ is a biquadratic extension.

Then, given any Rubin datum (S, V, T) for $K / k$ that satisfies $|S| \gt |V| + 1$ , the Burns–Kurihara–Sano conjecture is valid for $(K/k,S,V,T)$ . In particular, the Rubin–Stark conjecture is also valid for $(K/k,S,V,T)$ .

Remark 1·4. The condition $|S| \gt |V| + 1$ often already follows from (H1) and (H2). For example, if k has odd class number, then class field theory implies that there can only be finitely many biquadratic extensions K of k that admit a Rubin datum (S, V, T) with $|S| = |V| + 1$ .

Example 1·5. Fix a prime number p and let $\zeta_p$ be a primitive pth root of unity in an algebraic closure of ${\mathbb{Q}}$ . Let $\kappa$ be a number field with the property that $\kappa \cap {\mathbb{Q}} (\zeta_p) = {\mathbb{Q}}$ . If we pick any element $a \in \kappa^\times$ that is not a pth power in $\kappa$ , then it is also not a pth power in $k \,{:\!=}\, \kappa (\zeta_p)$ and $K \,{:\!=}\, k ( \sqrt[p]{a})$ is an extension of the form (i) with $q = p$ .

Remark 1·6. The Burns–Kurihara–Sano conjecture (for arbitrary Rubin datum) is known to be a consequence of the ‘equivariant Tamagawa Number Conjecture’ (eTNC) for $K / k$ by [ Reference Burns, Kurihara and Sano17 , Theorem 7·5]. (Note that the eTNC is referred to as the ‘Leading Term Conjecture’ LTC $(K/k)$ in the cited result, cf. [ Reference Burns, Kurihara and Sano17 , Proposition 3·4 and Remark 3·2]) For the extensions $K / k$ considered in Theorem 1·3 and any prime $\ell$ not dividing $[K : k]$ , the ‘ $\ell$ -component’ of $\mathrm{eTNC}(K/k)$ can easily be seen to follow from the analytic class number formula (via Tate’s proof [ Reference Tate56 , Chapter II, Theorem 6·8] of the ‘strong Stark conjecture’ in this setting) and Johnston and Nickel have proved in [ Reference Johnston and Nickel32 , Theorem 4·6] that in certain instances of case (i) one can even deduce the $\ell$ -component of $\mathrm{eTNC}(K/\kappa)$ . Of most interest, therefore, is the component of $\mathrm{eTNC}(K/k)$ at the unique prime dividing $[K : k]$ .

However, a proof of this component seems to be out of reach at present since even in the case (ii) of biquadratic extensions it amounts to a difficult, yet explicit, question regarding signs (see Remark 3·2 for more details). The perhaps surprising insight behind the proof of Theorem 1·3 is that the information provided by the analytic class number formula is nevertheless sufficient to allow for the deduction of the Burns–Kurihara–Sano conjecture, subject only to the restriction that $|S| \gt |V| + 1$ . In fact, the direct argument given in Section 3·1 is uniform and does not require a distinction between $\ell\nmid[K : k]$ and $\ell\mid[K : k]$ .

Remark 1·7. Johnston and Nickel [ Reference Johnston and Nickel32 , Theorem 7·6] have also proved a conjecture of Burns (from [ Reference Burns13 ]) regarding the annihilation of class groups in extensions $K / \kappa$ as in case (i) for which $k / {\mathbb{Q}}$ is abelian.

Results on the Rubin–Stark conjecture in the literature outside the classical cases where at most one archimedean place of k splits in K or the degree $[K : k]$ is at most two are sparse (see Remark 1·11 for a list of known cases). By combining Theorems 1·3 and 1·1 with Example 1·5, we now obtain the following method to systematically produce new examples in which the conjecture is valid.

Corollary 1·8. Let p be a prime number, let $\zeta_p$ be a primitive $p$ -th root of unity, and let $\kappa$ be a number field with the property that $\kappa \cap {\mathbb{Q}} (\mu_p) = {\mathbb{Q}}$ . Let $a_1, \dots, a_m$ be elements of $\kappa$ that are $\mathbb{F}_p$ -linearly independent in $\kappa^\times / (\kappa^\times)^p$ , and set $k \,{:\!=}\, \kappa (\mu_p)$ and $K \,{:\!=}\, k (\sqrt[p]{a_1}, \dots, \sqrt[p]{a_m})$ .

If (S, V, T) is a Rubin datum for $K / k$ with

\[|S| \geq \max \{ |V| + 2, |V| - s_p + (p - 1)(m - 1) + 3\},\]

then

\[\big \{ \theta_{K / k, S, T}^{(|V|)} (0) \cdot {\det}_{{\mathbb{R}} [G]} ( f_\mathbb{R}\circ \lambda_{K, S}^{-1} ) \mid f \in \mathrm{Hom}_{{\mathbb{Z}} [G]} ( \mathcal{O}_{K, S, T}^\times, X_{K, S}) \big \}\,\,\subseteq\,\, \mathrm{Ann}_{{\mathbb{Z}} [G]} ({\mathrm{Cl}}_{K, S, T}).\]

In particular, the Rubin–Stark conjecture is valid for $(K/k,S,V,T)$ .

Proof. The kernel of the natural map $\kappa^\times / (\kappa^\times)^p \to k^\times / (k^\times)^p$ identifies with $H^1 (\mathrm{Gal}({k}/{\kappa}), \mu_p)$ , and hence vanishes. It follows that $a_1, \dots, a_m$ generate an $\mathbb{F}_p$ -subvectorspace of $k^\times / (k^\times)^p$ of dimension m. By Kummer theory, one therefore has that $[K : k] = p^m$ and so, noting that $\mathrm{Gal}({k (\sqrt[p]{a_i})}/{\kappa}) \cong \mathrm{Aff}(p)$ for every $i \in \{1, \dots, m \}$ because $\kappa \cap {\mathbb{Q}} (\mu_p) = {\mathbb{Q}}$ , the result follows by combining Theorems 1·3 and 1·1.

1·3. The conjectures of Rubin–Stark and Burns–Kurihara–Sano

In this section we state the Rubin–Stark conjecture and the conjecture [ Reference Burns, Kurihara and Sano17 , Conjecture 7·3] of Burns, Kurihara and Sano, and we discuss the list of cases in which either conjecture is known to be valid. The formulations given here, in terms of the products of the form (1·2), are equivalent to the original versions of the conjectures by Lemma 2·2 below.

We fix a finite abelian extension of number fields $K/k$ with Galois group $G \,{:\!=}\, \mathrm{Gal}({K}/{k})$ and Rubin datum (S,V,T).

Conjecture 1·9 (Rubin–Stark, [ Reference Rubin48 , Conjecture B’]). One has

\[\big \{ \theta_{K / k, S, T}^{(|V|)} (0) \cdot {\det}_{{\mathbb{R}} [G]} ( f_\mathbb{R}\circ \lambda_{K, S}^{-1} ) \mid f \in \mathrm{Hom}_{{\mathbb{Z}} [G]} ( \mathcal{O}_{K, S, T}^\times, X_{K, S}) \big \}\,\,\subseteq\,\, {\mathbb{Z}} [G].\]

We set $K_T^\times \,{:\!=}\, \{ a \in K^\times \mid {\mathrm{ord}}_w (a - 1) \gt 0 \text{ if } w \in T_K\}$ . Then the ‘integral dual Selmer group’ $\mathrm{Sel}_{K, S, T}$ is defined by Burns–Kurihara–Sano [ Reference Burns, Kurihara and Sano17 , Definition 2·1] as the cokernel of the map

\[ \prod_{w \not \in S_K \cup T_K} {\mathbb{Z}} \to \mathrm{Hom}_{\mathbb{Z}} ( K_T^\times, {\mathbb{Z}} ),\quad (x_w)_w \mapsto \big \{ a \mapsto \sum_{w} x_w {\mathrm{ord}}_w (a) \big \}.\]

It fits into a canonical exact sequence of G-modules

\begin{align*} 0 \longrightarrow \mathrm{Hom}_{\mathbb{Z}} ( {\mathrm{Cl}}_{K, S, T}, {\mathbb{Q}} / {\mathbb{Z}}) \longrightarrow \mathrm{Sel}_{K, S, T} \longrightarrow \mathrm{Hom}_{\mathbb{Z}} ( \mathcal{O}_{K, S, T}^\times, {\mathbb{Z}} ) \longrightarrow 0,\end{align*}

with all duals endowed with the contragredient G-action.

In the sequel, for $n\geq 0$ , we write ${\operatorname{Fitt}}^n_{{\mathbb{Z}} [G]} (M)$ for the $n$ - th Fitting ideal in $\mathbb{Z}[G]$ of a finitely presented ${\mathbb{Z}} [G]$ -module M (see, for example, [ Reference Northcott46 , Section 3·1] or [ Reference Nickel43 ]). Given a subset I of ${\mathbb{C}} [G]$ , we denote by $I^\#$ the image of I under the involution of ${\mathbb{C}} [G]$ that inverts elements of G.

Burns–Kurihara–Sano use the Selmer group to refine Conjecture 1·9 as follows.

Conjecture 1·10 (Burns–Kurihara–Sano [ Reference Burns, Kurihara and Sano17 , Conjecture 7·3]). One has

(1·3) \begin{equation} \big \{ \theta_{K / k, S, T}^{(|V|)} (0) \cdot {\det}_{{\mathbb{R}} [G]} ( f_\mathbb{R}\circ \lambda_{K, S}^{-1} ) \mid f \in \mathrm{Hom}_{{\mathbb{Z}} [G]} ( \mathcal{O}_{K, S, T}^\times, X_{K, S}) \big \} = {\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G]} ( \mathrm{Sel}_{K, S, T})^\#.\end{equation}

Remark 1·11. To the best of the authors’ knowledge, the following is a complete list of cases in which the Rubin–Stark conjecture is known at present.

  1. (a) One can directly verify the conjecture for the following general classes of extensions $K / k$ :

    1. (i) if $[K\,{:}\,k] \leq 2$ , then it follows from the analytic class number formula (see [ Reference Rubin48 , Corollary 3·2 and Theorem 3·5]);

    2. (ii) if $k = {\mathbb{Q}}$ and $V = S_\infty$ is the singleton comprising the unique infinite place of ${\mathbb{Q}}$ , then it follows by means of a direct computation that shows that the relevant Rubin–Stark element (as defined in section 2·1) can be expressed in terms of a cyclotomic unit (cf. [ Reference Tate56 , Chapter III, Section 5]);

    3. (iii) if k is an imaginary quadratic field and $V = S_\infty$ is the singleton comprising the unique infinite place of k, then it follows from Kronecker’s Second Limit Formula for elliptic units (cf. [ Reference Tate56 , Chapter IV, Proposition 3·9]);

    4. (iv) if $V = {\varnothing}$ , then it is a consequence of work of Cassou-Noguès [ Reference Cassou-Noguès19 ] and, independently, Deligne and Ribet [ Reference Deligne and Ribet24 ] (cf. [ Reference Gross30 , Proposition 3·7]).

  1. (b) In addition, the conjecture has been directly verified in the following particular cases.

    1. (i) Grant [ Reference Grant29 ] has verified it for $k = {\mathbb{Q}} ( \zeta_5)$ and $K = k ( \sqrt[5]{\epsilon})$ with $\zeta$ a primitive 5th root of unity and $\epsilon \,{:\!=}\, - \zeta^2 - \zeta^3$ .

    2. (ii) If $K / k$ is multi-quadratic, then Dummit, Sands and Tangedal [ Reference Dummit, Sands and Tangedal25 ], Sands [ Reference Sands51 ], and the second author [ Reference Macías Castillo37 ] have verified it in special cases.

    3. (iii) McGown, Sands and Vallières [ Reference McGown, Sands and Vallières38 ] have numerically verified it for $V = S_\infty$ in the 19197 examples of k a real quadratic field and K a totally real cubic extensions of k of discriminant less than $10^{12}$ and $V = S_\infty$

  1. (c) It holds if $S \setminus V$ contains a place that splits completely in K (cf. [ Reference Rubin48 , Proposition 3·1]).

  2. (d) The examples listed in (a) are by now sufficiently well understood to allow for a proof of $\mathrm{eTNC}(K/k)$ [ Reference Burns, Kurihara and Sano17 , Conjecture 3·6]. By [ Reference Burns, Kurihara and Sano17 , Theorem 7·5], for any given Rubin datum for $K/k$ , the conjecture [ Reference Burns, Kurihara and Sano17 , Conjecture 7·3], and hence also the Rubin–Stark conjecture, is a consequence of $\mathrm{eTNC}(K/k)$ . Using functoriality properties of the eTNC, one thus obtains the validity of both the Burns–Kurihara–Sano and Rubin–Stark conjectures for any $K / k$ (and Rubin datum) such that $F \subseteq k \subseteq K \subseteq H$ , with $H / F$ a finite Galois extension for which $\mathrm{eTNC} (H / F)$ holds. The same conclusion is true if the ‘minus part’ $\mathrm{eTNC}^- (H / F)$ of $\mathrm{eTNC} (H / F)$ holds and k is totally real and K is totally imaginary.

    In this direction, the following is currently known:

  1. (i) $\mathrm{eTNC} (H / F)$ holds if $[H:F]=2$ ; this case is proved by Kim [ Reference Kim36 , Section 2·4];

  2. (ii) $\mathrm{eTNC} (H / F)$ holds if $F = {\mathbb{Q}}$ ; this is work of Burns and Greither [ Reference Burns and Greither15 ] with additional arguments for the 2-component by Flach [ Reference Flach28 ];

  3. (iii) $\mathrm{eTNC} (H / F)$ holds if F an imaginary quadratic field such that all prime divisors of $[H : F]$ split in k or validate Iwasawa’s $\mu$ -vanishing conjecture; this case is proved by Hofer and the first author [ Reference Bullach and Hofer11 , Theorem B] and extends previous work of Bley [ Reference Bley2 , Reference Bley3 , Reference Bley4 ].

  4. (iv) $\mathrm{eTNC} (H / F)^-$ holds if F is a totally real field and H is CM; this is work of the first author, Burns, Daoud and Seo [ Reference Bullach, Burns, Daoud and Seo10 ] with additional arguments for the 2-component by Dasgupta, Kakde and Silliman [ Reference Dasgupta, Kakde and Silliman22 ]. Earlier work in this direction includes [ Reference Atsuta and Kataoka1 , Reference Nickel41 , Reference Nickel42 , Reference Nickel44 ]. (The results in [ Reference Bullach, Burns, Daoud and Seo10 ] crucially rely on work of Dasgupta and Kakde [ Reference Dasgupta and Kakde21 ] on the Strong Brumer–Stark conjecture, and we remark that the Rubin–Stark conjecture can alternatively be directly deduced from the Strong Brumer–Stark conjecture, see [ Reference Dasgupta and Kakde21 , Theorem 1·6]).

  1. Further examples of, not necessarily abelian, extensions $H / F$ for which $\mathrm{eTNC}(H/F)$ is known at present include the following:

    1. (i) H is a totally real Galois extension of $F = {\mathbb{Q}}$ such that either $\mathrm{Gal}({K}/{{\mathbb{Q}}}) \cong S_3$ and H has discriminant less than $10^{20}$ or $\mathrm{Gal}({H}/{{\mathbb{Q}}}) \cong D_{12}$ and H has discriminant less than $10^{30}$ ; by Hofmann, Johnston, and Nickel [ Reference Johnston and Nickel34 , Corollary A·3].

    2. (ii) a particular family of Quaternionic extensions H of $F=\mathbb{Q}$ ; by Burns and Flach [ Reference Burns and Flach14 , Theorem 4·1].

    3. (iii) one example of a Galois extension H of $F=\mathbb{Q}$ with $\mathrm{Gal}({H}/{{\mathbb{Q}}}) \cong A_4$ ; numerical verification by Navilarekallu [ Reference Navilarekallu40 ].

    4. (iv) when a number of standard conjectures are known to be valid, further results can be deduced from the examples above, see [ Reference Johnston and Nickel32 , Section 4] and [ Reference Johnston and Nickel34 , Section 10].

2. Preliminaries

In this preliminary section we review various constructions that will be useful in the sequel.

2·1. Rubin–Stark elements

Let $K/k$ be a finite abelian extension of number fields with Galois group $G \,{:\!=}\, \mathrm{Gal}({K}/{k})$ and let (S, V, T) be a Rubin datum for $K / k$ . We fix a labelling $S = \{ v_0, \dots, v_{|S| - 1} \}$ such that $V = \{ v_1, \dots, v_{|V|} \}$ along with an extension $w_i$ to K of each place $v_i$ in S. The ‘Rubin–Stark element’ $\varepsilon^V_{K / k, S, T}$ for (S, V, T) is then the unique element of ${\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}^\times_{K, S}$ with the property that

\[\big( \bigwedge\nolimits^{|V|} \lambda_{K, S} \big) (\varepsilon^V_{K / k, S, T}) = \theta^{(|V|)}_{K / k, S, T} (0) \cdot \bigwedge\nolimits_{1 \leq i \leq |V|} ( w_i - w_0)\]

with $\bigwedge\nolimits^{|V|} \lambda_{K, S} {\colon} {\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}^\times_{K, S} \stackrel{\simeq}{\longrightarrow} {\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} X_{K, S}$ the isomorphism induced by (1·1).

Definition 2·1 . We define a ${\mathbb{Z}} [G]$ -submodule of ${\mathbb{R}} [G]$ by setting

\[\mathrm{im} ( \varepsilon^V_{K / k, S, T} ) \,{:\!=}\, \big \{ F (\varepsilon^V_{K / k, S, T}) \mid F \in \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathrm{Hom}_{{\mathbb{Z}} [G]}( \mathcal{O}^\times_{K, S, T}, {\mathbb{Z}} [G]) \big \},\]

where $F (\varepsilon^V_{K / k, S, T})$ denotes the image of $(\varepsilon^V_{K / k, S, T}, F)$ under the determinant pairing

\begin{align*}\big( {\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}^\times_{K, S} \big)\times\big( {\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathrm{Hom}_{{\mathbb{Z}} [G]}( \mathcal{O}^\times_{K, S, T}, {\mathbb{Z}} [G]) \big)& \to {\mathbb{R}} [G], \\(a_1 \wedge \dots \wedge a_{|V|}, f_1 \wedge \dots \wedge f_{|V|} )& \mapsto \det ( f_i ( a_j))_{1 \leq i, j \leq |V|}.\end{align*}

The following result was used in section 1·3 to reformulate both the Rubin–Stark conjecture and the Burns–Kurihara–Sano conjecture in terms of the more explicit products of the form (1·2).

Lemma 2·2. For any Rubin datum (S, V, T) for $K / k$ , one has an equality

\[\mathrm{im} ( \varepsilon^V_{K / k, S, T} ) = \{ \theta^{|V|}_{K / k, S, T} (0) \cdot {\det}_{{\mathbb{R}} [G]} ( f_\mathbb{R} \circ \lambda_{K, S}^{-1}) \mid f \in \mathrm{Hom}_{{\mathbb{Z}} [G]} ( \mathcal{O}_{K, S, T}^\times, X_{K, S}) \}.\]

Proof. This is an immediate consequence of [ Reference Macías Castillo37 , Lemma 2·2].

2·2. Weil-étale cohomology complexes

We briefly recall key properties of a useful family of complexes constructed by Burns, Kurihara, and Sano in [ Reference Burns, Kurihara and Sano17 ]. To do so, we let $K/F$ be an arbitrary finite Galois extension of number fields with Galois group $\Delta_F\,{:\!=}\,\mathrm{Gal}({K}/{F})$ .

We write $D(\mathbb{Z}[\Delta_F])$ for the derived category of $\mathbb{Z}[\Delta_F]$ -modules and $D^{\mathrm{p}}(\mathbb{Z}[\Delta_F])$ for its full triangulated subcategory comprising complexes that are ‘perfect’, that is, isomorphic (in $D(\mathbb{Z}[\Delta_F])$ ) to a bounded complex of finitely generated projective $\mathbb{Z}[\Delta_F]$ -modules.

Lemma 2·3. Fix sets S and T of places of F that satisfy the conditions (H1) and (H3) in section 1 with k replaced by F. Then the ‘Weil-ètale cohomology complex’

\[C^\bullet_{K, S, T} \,{:\!=}\, \mathrm{RHom}_{\mathbb{Z}} ( \mathrm{R} \Gamma_{\mathrm{c}, T} ( ( {\mathcal{O}}_{K, S})_\mathcal{W}, {\mathbb{Z}}), {\mathbb{Z}}) [-2]\]

constructed in [ Reference Burns, Kurihara and Sano17 , Proposition 2·4] is an object of $D^{\mathrm{p}}(\mathbb{Z}[\Delta_F])$ that has the following properties:

  1. (i) $C^\bullet_{K,S,T}$ is acyclic outside degrees zero and one, with $H^0(C^\bullet_{K,S,T})=\mathcal{O}_{K,S,T}^\times$ , and the ‘transpose Selmer group’ $\mathrm{Sel}^{\mathrm{tr}}_{K,S,T} \,{:\!=}\, H^1(C^\bullet_{K,S,T})$ lies in a short exact sequence of $\Delta_F$ -modules

    \begin{align*} 0\longrightarrow {\mathrm{Cl}}_{K,S,T}\longrightarrow \mathrm{Sel}^{\mathrm{tr}}_{K,S,T}\longrightarrow X_{K,S}\longrightarrow 0;\end{align*}
  2. (ii) $C^\bullet_{K,S,T}$ is isomorphic in $D(\mathbb{Z}[\Delta_F])$ to a complex $[P_0 \stackrel{\phi}{\to} P_1]$ in which $P_0$ is finitely generated projective (and placed in degree 0) while $P_1$ is free of finite rank;

  3. (iii) for any normal subgroup $\Gamma$ of $\Delta_F$ there is, in $D^{\mathrm{p}}(\mathbb{Z}[\Delta_F/\Gamma])$ , a canonical isomorphism

    \[\mathbb{Z}[\Delta_F/\Gamma]\otimes^{\mathbb{L}}_{\mathbb{Z}[\Delta_F]}C^\bullet_{K,S,T}\cong C^\bullet_{K^\Gamma,S,T}.\]

Proof. $C^\bullet_{K,S,T}$ is an object of $D^{\mathrm{p}}(\mathbb{Z}[\Delta_F])$ by choice of S and by [ Reference Burns, Kurihara and Sano17 , Proposition 2·4 (iv)]. Claim (i) is [ Reference Burns, Kurihara and Sano17 Remark 2·7], Claim (ii) is proved in [ Reference Burns, Kurihara and Sano17 , Section 5·4]. Claim (iii) follows from the diagram in [ Reference Burns, Kurihara and Sano17 , Proposition 2·4 (i)], and the functoriality properties of étale cohomology.

3. The proof of Theorem 1·3

3·1. The proof in case (i)

In this subsection we assume the hypotheses of Theorem 1·3 (i). In particular, $\Delta \,{:\!=}\, \mathrm{Gal}({K}/{\kappa})$ is isomorphic to ${\mathrm{Aff}} (q)$ , and (S, V, T) is a Rubin datum for $K / k$ with $|S| \gt |V| + 1$ . We recall that ${\mathrm{Aff}} (q)$ is isomorphic to the semidirect product $\mathbb{F}_q\rtimes\mathbb{F}_q^\times$ with the natural action (see for instance [ Reference Johnston and Nickel32 , Example 2·16]).

Since $G = \mathrm{Gal}({K}/{k})$ is abelian, the complex $C^\bullet_{K,S,T}$ in $D^{\mathrm{p}}(\mathbb{Z}[G])$ admits a well-defined determinant ${\mathrm{Det}}_{{\mathbb{Z}} [G]} (C^\bullet_{K, S, T})$ (in the sense of Knudsen–Mumford). We then also use the ‘zeta element’ $z_{K / k, S, T} \in {\mathbb{R}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ , the definition of which can be found in [ Reference Burns, Kurihara and Sano17 , Definition 3·5] and will be recalled in the course of the proof of Lemma 3·1 below. For the moment we only note that $z_{K / k, S, T}$ is by construction an ${\mathbb{R}} [G]$ -basis of the free rank-one ${\mathbb{R}} [G]$ -module ${\mathbb{R}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ .

Lemma 3·1. The following claims are valid.

  1. (a) The zeta element $z_{K / k, S, T}$ belongs to ${\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ . In particular, $z_{K / k, S, T}$ is a ${\mathbb{Q}} [G]$ -basis of the free rank-one ${\mathbb{Q}} [G]$ -module ${\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ .

  2. (b) For every prime number $\ell$ , there exists an element $\mathfrak{z}^{(\ell)}_{K / k, S, T}$ of ${\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ with the following properties:

    1. (i) the ${\mathbb{Z}} [G]$ -submodule of ${\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ generated by $\mathfrak{z}^{(\ell)}_{K / k, S, T}$ has prime-to- $\ell$ index;

    2. (ii) the unique element $\lambda^{(\ell)} \in {\mathbb{Q}} [G]$ defined by $z_{K / k, S, T} = \lambda^{(\ell)} \cdot \mathfrak{z}^{(\ell)}_{K / k, S, T}$ belongs to the image of the map

      \[\rho_{\Delta / G} {\colon} \zeta({\mathbb{C}} [\Delta]) \to {\mathbb{C}} [G], \quad x \mapsto \sum_{\chi \in \widehat{G}} \big( \prod_{\psi \in \widehat{\Delta}} \psi (x)^{\langle \psi, \mathrm{Ind}_G^\Delta( \chi) \rangle} \big) \cdot e_\chi,\]
      where $\widehat{\Delta}$ is the set of irreducible characters of $\Delta$ , $\langle \cdot, \cdot \rangle$ denotes the inner product of characters, $\zeta({\mathbb{C}} [\Delta]) \cong \prod_{\psi \in \widehat{\Delta}} {\mathbb{C}}$ denotes the centre of ${\mathbb{C}} [\Delta]$ , and we have written $\psi$ for the map $\zeta({\mathbb{C}} [\Delta]) \to {\mathbb{C}}$ induced by $\psi$ .

Proof. Claim (a) is equivalent to Stark’s conjecture for $K / k$ (cf. [ Reference Flach27 , Theorem 7·1 b)]). Since any non-trivial (irreducible) character of G induces a rational-valued character of $\Delta$ (see, for example, [ Reference Motose39 , Theorem 5]), the validity of Stark’s conjecture follows from Tate’s proof of Stark’s conjecture for rational-valued characters in [ Reference Tate56 , Chapter II, Theorem 6·8].

To prove claim (b), we may enlarge S and T since, if S’ and T’ are respective disjoint finite oversets of S and T, then the exact triangles in [ Reference Burns, Kurihara and Sano17 , Proposition 2·4, (ii) and right-hand column of (6) in (i)] induce an isomorphism

\[{\mathrm{Det}}_{{\mathbb{Z}} [G]} (C^\bullet_{K, S', T'}) \stackrel{\simeq}{\longrightarrow} {\mathrm{Det}}_{{\mathbb{Z}} [G]} (C^\bullet_{K, S, T})\]

that maps $z_{K / k, S', T'}$ to $z_{K / k, S, T}$ . We therefore may and will assume that S contains all places that are ramified in $K / \kappa$ and that both S and T are stable under the action of $\Delta$ .

Since the complex $C^\bullet_{K,S,T}$ depends only on K, $S_K$ and $T_K$ , we may then regard it also as an object of $D^{\mathrm{p}}(\mathbb{Z}[\Delta])$ . We fix a representative of $C^\bullet_{K,S,T}$ in $D(\mathbb{Z}[\Delta])$ as in Lemma 2·3 (ii) (applied to $F = \kappa$ ). We note that (1·1) combines with the Noether–Deuring Theorem to imply that ${\mathbb{Q}} \otimes_{\mathbb{Z}} P_0 \cong {\mathbb{Q}} \otimes_{\mathbb{Z}} P_1$ . For every prime number $\ell$ , Roiter’s Lemma [ Reference Curtis and Reiner20 , (31·6)] then gives the existence of an injection $i^{(\ell)} {\colon} P_1 \hookrightarrow P_0$ with finite cokernel of order prime to $\ell$ .

We fix a set $\{ \sigma_1, \dots, \sigma_{(\Delta : G)}\}$ of representatives for $\Delta / G$ and choose an ordered ${\mathbb{Z}} [\Delta]$ -basis $\mathfrak{B} = \{ b_1, \dots, b_d \}$ of $P_1$ . Then $P_1$ is also a free ${\mathbb{Z}} [G]$ -module, with (ordered) ${\mathbb{Z}} [G]$ -basis

\[\mathfrak{B}' \,{:\!=}\, \{ \sigma_1 b_1, \dots \sigma_{(\Delta : G)} b_1, \dots,\sigma_1 b_d, \dots \sigma_{(\Delta : G)} b_d\}.\]

We also define ordered sets $\mathfrak{C}^{(\ell)} \,{:\!=}\, \{ i^{(\ell)} (b) \mid b \in \mathfrak{B} \}$ and ${\mathfrak{C}'}^{(\ell)} = \{ i^{(\ell)} (b) \mid b \in \mathfrak{B}'\}$ . Setting $P_1^\ast \,{:\!=}\, \mathrm{Hom}_{{\mathbb{Z}} [G]} (P_1, {\mathbb{Z}} [G])$ , we now define

\begin{align*}\mathfrak{z}^{(\ell)}_{K / k, S, T} \,{:\!=}\, \big( \bigwedge_{c \in {\mathfrak{C}'}^{(\ell)}} c \big)\otimes \big( \bigwedge_{b \in \mathfrak{B}'} b^\ast \big)\; &\in \; \big( \bigwedge\nolimits_{{\mathbb{Z}} [G]}^{(\Delta : G)d} P_0 \big) \otimes_{{\mathbb{Z}} [G]} \big( \bigwedge\nolimits_{{\mathbb{Z}} [G]}^{(\Delta : G)d} P_1^\ast \big) \\&= {\mathrm{Det}}_{{\mathbb{Z}} [G]} (C^\bullet_{K, S, T}),\end{align*}

where $b^\ast {\colon} P_1 \to {\mathbb{Z}} [G]$ denotes the ${\mathbb{Z}} [G]$ -linear dual of $b \in P_1$ . By construction, the element $\mathfrak{z}^{(\ell)}_{K / k, S, T}$ then has property (i).

To justify claim (ii), we first recall the definition of the zeta element $z_{K / k, S, T}$ . Our fixed choice of representative for $C^\bullet_{K, S, T}$ gives rise to exact sequences $0 \to \mathcal{O}_{K,S, T}^\times \to P_0 \to \phi (P_0) \to 0$ and $\phi (P_0) \to P_1 \to \mathrm{Sel}^{\mathrm{tr}}_{K,S,T} \to 0$ of ${\mathbb{Z}} [\Delta]$ -modules for which we may choose ${\mathbb{R}} [\Delta]$ -splittings

\begin{align*}\iota_1 &{\colon} {\mathbb{R}} \otimes_{\mathbb{Z}} P_0 \cong ({\mathbb{R}} \otimes_{\mathbb{Z}} \mathcal{O}_{K,S, T}^\times)\oplus ( {\mathbb{R}} \otimes_{\mathbb{Z}}\phi (P_0)),\ \\\iota_2 &{\colon} {\mathbb{R}} \otimes_{\mathbb{Z}} P_1 \cong ({\mathbb{R}} \otimes_{\mathbb{Z}} X_{K,S})\oplus ( {\mathbb{R}} \otimes_{\mathbb{Z}} \phi (P_0)).\end{align*}

Given this, we define the composite isomorphism of ${\mathbb{R}} [\Delta]$ -modules

\[\alpha \,{:\!=}\, (\iota_2^{-1} \circ (\lambda_{K, S} \oplus {\mathrm{id}} ) \circ \iota_1) {\colon} P_0 \to P_1,\]

where $\lambda_{K, S}$ denotes the Dirichlet regulator map defined in (1·1). We write $A^{(\ell)}$ for the matrix in $\mathrm{GL}_{(\Delta : G) d} ( {\mathbb{R}} [G])$ that represents $\alpha$ with respect to the bases ${\mathfrak{C}'}^{(\ell)}$ and $\mathfrak{B}'$ .

We consider the ‘leading term’

\[\theta^\ast_{K / \kappa, S, T} (0) \,{:\!=}\,\sum_{\psi \in \widehat{\Delta}} L^\ast_{\kappa, S, T} (\check\psi, 0) e_{\psi}\in\zeta(\mathbb{R}[\Delta])^\times,\]

where $\check\psi$ denotes the contragredient of $\psi$ and $L^\ast_{\kappa, S, T} (\check\psi, 0)$ is the leading term of $L_{\kappa, S, T} (\check\psi, s)$ at $s = 0$ . Similarly, we set $\theta^\ast_{K / k, S, T} (0) \,{:\!=}\,\sum_{\chi \in \widehat{G}} L^\ast_{k, S, T} (\check\chi, 0) e_{\chi}\in\mathbb{R}[G]^\times$ . One then has that $z_{K / k, S, T} = \lambda^{(\ell)} \cdot \mathfrak{z}^{(\ell)}_{K / k, S, T}$ with $\lambda^{(\ell)} \in {\mathbb{R}} [G]^\times$ the unique element such that $\lambda^{(\ell)} \cdot {\det}_{{\mathbb{R}} [G]} ( A^{(\ell)}) = \theta^\ast_{K / k, S, T} (0) $ . The reduced norm of the matrix $B^{(\ell)} \in \mathrm{GL}_d ({\mathbb{R}} [\Delta])$ that represents $\alpha$ with respect to the bases $\mathfrak{C}^{(\ell)}$ and $\mathfrak{B}$ belongs to $\zeta(\mathbb{R}[\Delta])^\times$ , and we define a scalar $\mu^{(\ell)} \in \zeta({\mathbb{R}} [\Delta])^\times$ by

\[\mu^{(\ell)} \cdot \mathrm{Nrd}_{{\mathbb{R}} [\Delta]} ( B^{(\ell)}) = \theta^\ast_{K / \kappa, S, T}(0).\]

By the functoriality of reduced norms under restriction to subgroups (see, for example, [ Reference Breuning5 , bottom of p. 291]) one has $\rho_{\Delta/G}(\mathrm{Nrd}_{{\mathbb{R}} [\Delta]} ( B^{(\ell)}))={\det}_{{\mathbb{R}} [G]} ( A^{(\ell)})$ and thus also

$$ \rho_{\Delta / G} ( \mu^{(\ell)}) \cdot {\det}_{{\mathbb{R}} [G]} ( A^{(\ell)})=\rho_{\Delta / G} ( \theta^\ast_{K / \kappa, S, T}(0))=\theta^\ast_{K / k, S, T}(0),$$

from which we deduce that $\rho_{\Delta / G} ( \mu^{(\ell)}) = \lambda^{(\ell)}$ . This concludes the proof of claim (b).

We now give the proof of Theorem 1·3 in case (i). Since $\Delta \cong {\mathrm{Aff}} (q)$ , one has that $\widehat{\Delta}$ consists of the linear characters of $\Delta / G$ and the unique irreducible character of degree

$q - 1$ that is obtained as $\psi_{\mathrm{nl}} \,{:\!=}\, \mathrm{Ind}_G^\Delta (\chi)$ for any non-trivial (irreducible) character $\chi$ of G (see, for example, [ Reference Motose39 , Theorem 5]). As a consequence, one has

\[\langle \psi, \mathrm{Ind}_G^\Delta( \chi) \rangle =\begin{cases}1 \quad & \text{ if } \chi \neq \mathbf{1}_G, \psi = \psi_{\mathrm{nl}}, \\1 & \text{ if } \chi = \mathbf{1}_G, \psi = \mathbf{1}_\Delta, \\0 & \text{ otherwise}.\end{cases}\]

For every prime number $\ell$ , the element $\lambda^{(\ell)}$ provided by Lemma 3·1 (b) (ii) is hence of the form $\lambda^{(\ell)} = a e_{\mathbf{1}} + b (1 - e_{\mathbf{1}})$ for suitable $a, b \in {\mathbb{Q}}$ .

Now, the isomorphism $\mathbb{Z}\otimes^\mathbb{L}_{{\mathbb{Z}} [G]}C^\bullet_{K, S, T} \cong C^\bullet_{k, S, T}$ in Lemma 2·3 (iii) induces an isomorphism $\mathbb{Z}\otimes_{\mathbb{Z}[G]}( {\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})) \cong {\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{\mathbb{Z}} (C^\bullet_{k, S, T})$ that sends $1 \otimes z_{K / k, S, T}$ to $z_{k/k, S, T}$ . In addition, the analytic class number formula for k asserts that $z_{k/k, S, T}$ is a ${\mathbb{Z}}$ -basis of the free rank-one ${\mathbb{Z}}$ -module ${\mathrm{Det}}_{\mathbb{Z}} (C^\bullet_{k, S, T})$ (cf. [ Reference Kato35 , Section 2·2·2] or [ Reference Burns12 , Exercise 2·6]).

For each prime number $\ell$ , we write $\mathbb{Z}_{(\ell)}$ for the localisation of $\mathbb{Z}$ at the prime ideal $\ell{\mathbb{Z}}$ . The definition of $\mathfrak{z}_{K / k, S, T}^{(\ell)}$ then implies that both $1 \otimes \mathfrak{z}_{K / k, S, T}^{(\ell)}$ and $a \cdot (1 \otimes \mathfrak{z}_{K / k, S, T}^{(\ell)}) = 1 \otimes ( \lambda^{(\ell)} \mathfrak{z}_{K / k, S, T}^{(\ell)}) = 1 \otimes z_{K / k, S, T}$ are $\mathbb{Z}_{(\ell)}$ -bases of $\mathbb{Z}\otimes_{\mathbb{Z}[G]}( \mathbb{Z}_{(\ell)} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})) $ . We conclude that a belongs to $\mathbb{Z}_{(\ell)}^\times$ .

We next write $\mathrm{N} = \mathrm{N}_{{\mathbb{Q}} [G] / {\mathbb{Q}}} {\colon} {\mathbb{Q}} [G] \to {\mathbb{Q}}$ for the ring-theoretic norm map and note that the construction of [ Reference Bullach, Burns, Daoud and Seo10 , Lemma 3·7 (c)] gives the existence of an N-semilinear map $\mathcal{F} {\colon} {\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T}) \to {\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{\mathbb{Z}} (C^\bullet_{K, S, T})$ that sends $z_{K / k, S, T}$ to $z_{K / K, S, T}$ . Since $z_{K / K, S, T}$ is a ${\mathbb{Z}}$ -basis of ${\mathrm{Det}}_{\mathbb{Z}} (C^\bullet_{K, S, T})$ by the analytic class number formula for K, we see that for each prime $\ell$ , both $\mathcal{F} ( \mathfrak{z}_{K / k, S, T}^{(\ell)})$ and $z_{K / k, S, T} = \mathcal{F} ( z_{K / k, S, T}) = \mathcal{F} ( \lambda^{(\ell)} \mathfrak{z}_{K / k, S, T}^{(\ell)}) = \mathrm{N} ( \lambda^{(\ell)}) \cdot \mathcal{F} ( \mathfrak{z}_{K / k, S, T}^{(\ell)})$ are ${\mathbb{Z}}_{(\ell)}$ -bases of ${\mathbb{Z}}_{(\ell)} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{\mathbb{Z}} (C^\bullet_{K, S, T})$ . It follows that $\mathrm{N} (\lambda^{(\ell)}) = a b^{q - 1}$ must also belong to ${\mathbb{Z}}_{(\ell)}^\times$ . Upon recalling that $a \in {\mathbb{Z}}_{(\ell)}^\times$ by the above discussion, we conclude that $b^{q - 1} \in {\mathbb{Z}}_{(\ell)}^\times$ . Since b is rational, we deduce that b belongs to ${\mathbb{Z}}_{(\ell)}^\times$ .

Define an idempotent $e_{K, S, V}$ of ${\mathbb{Q}} [G]$ as the sum $\sum_\chi e_\chi$ of all primitive orthogonal idempotents $e_\chi$ associated with characters $\chi$ of G such that $e_\chi$ annihilates $\mathbb{C}\otimes_\mathbb{Z} X_{K, S \setminus V}$ .

We then define a ‘projection map’ $\Theta_{K / k, S}^V$ as the composite map

(3·4) \begin{align} \nonumber {\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S})& \xrightarrow{\phantom{\cdot e_{K, S, V}}} {\mathrm{Det}}_{{\mathbb{Q}} [G]} ( {\mathbb{Q}} \otimes_{\mathbb{Z}} \mathcal{O}_{K, S}^\times)\otimes_{{\mathbb{Q}} [G]} {\mathrm{Det}}_{{\mathbb{Q}} [G]} ( {\mathbb{Q}} \otimes_{\mathbb{Z}} X_{K, S})^{-1} \\ \nonumber& \xrightarrow{\cdot e_{K, S, V}}e_{K, S, V} \cdot \big ( ( {\mathbb{Q}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S, T}^\times)\otimes_{{\mathbb{Q}} [G]} ( {\mathbb{Q}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} Y_{K, V} )^{-1} \big) \\& \xrightarrow{\quad \simeq \quad} e_{K, S, V} \cdot ( {\mathbb{Q}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S, T}^\times),\end{align}

where the first arrow is the natural ‘passage-to-cohomology’ map, the second map is induced by multiplication by $e_{K, S, V}$ , and the last arrow by the trivialisation $\bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} Y_{K, V} \cong {\mathbb{Z}} [G]$ that is afforded by sending $\bigwedge\nolimits_{1 \leq i \leq |V|} w_i$ to 1.

Note that our hypothesis $|S| \gt |V| + 1$ combines with the short exact sequence $0\to X_{K,S\setminus V}\to X_{K,S}\to Y_{K,V}\to 0$ to imply that $e_{\mathbf{1}}\cdot e_{K, S, V}=0$ . In particular, we have $\lambda^{(\ell)} \cdot e_{K, S, V} = (a e_{\mathbf{1}} + b ( 1 - e_{\mathbf{1}})) \cdot e_{K, S, V} = b e_{K, S, V}$ . Since it is proved in [ Reference Burns, Kurihara and Sano17 , Theorem 5·14] that one has $\Theta_{K / k, S}^V ( z_{K / k, S, T}) = \varepsilon^V_{K / k, S, T}$ , we therefore deduce that

\[\varepsilon^V_{K / k, S, T} = \Theta_{K / k, S, T}^V ( z_{K / k, S, T})= \lambda^{(\ell)} \cdot \Theta_{K / k, S, T}^V (\mathfrak{z}^{(\ell)}_{K / k, S, T}) = b \cdot \Theta_{K / k, S, T}^V (\mathfrak{z}^{(\ell)}_{K / k, S, T})\]

for each prime $\ell$ . Now, the equality

\[{\mathbb{Z}}_{(\ell)} \otimes_{\mathbb{Z}} \mathrm{im} ( \Theta_{K / k, S, T}^V (\mathfrak{z}^{(\ell)}_{K / k, S, T}))= {\mathbb{Z}}_{(\ell)} \otimes_{\mathbb{Z}} {\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G]} ( \mathrm{Sel}_{K, S, T})^\#\]

that is established via the argument of [ Reference Burns, Kurihara and Sano17 , Theorem 7·5] combines with the last displayed equation and the fact that b is invertible to imply that

\[{\mathbb{Z}}_{(\ell)} \otimes_{\mathbb{Z}} \mathrm{im} ( \varepsilon^V_{K / k, S, T})= {\mathbb{Z}}_{(\ell)} \otimes_{\mathbb{Z}} \big ( b \cdot \mathrm{im} ( \Theta_{K / k, S, T}^V (\mathfrak{z}^{(\ell)}_{K / k, S, T})) \big)= {\mathbb{Z}}_{(\ell)} \otimes_{\mathbb{Z}} {\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G]} ( \mathrm{Sel}_{K, S, T})^\#.\]

The claim in Theorem 1·3 (i) now follows upon recalling that $\ell$ is an arbitrary prime number.

3·2. The proof in case (ii)

To prove Theorem 1·3 in case (ii), we let $K/k$ be a biquadratic extension of number fields and note that, by the known validity of Stark’s conjecture for $K / k$ , the zeta element $z_{K / k, S, T}$ is a ${\mathbb{Q}} [G]$ -basis of the free rank-one ${\mathbb{Q}} [G]$ -module ${\mathbb{Q}} \otimes_{\mathbb{Z}} {\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ (cf. the argument of Lemma 3·1 (a)). We then let $\ell$ be an arbitrary prime number and choose, using Roiter’s Lemma, an element $\mathfrak{z}_{K / k, S, T}^{(\ell)}$ that generates a ${\mathbb{Z}} [G]$ -submodule of ${\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T})$ of finite, prime-to- $\ell$ index. Label the proper intermediate fields of $K / k$ as $K_1 \,{:\!=}\, k, K_2, K_3$ , and $K_4$ , and, using Lemma 2·3 (iii), denote the image of $\mathfrak{z}_{K / k, S, T}^{(\ell)}$ under the natural map

\[{\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T}) \to{\mathbb{Z}} [\mathrm{Gal}({K_i}/{k})]\otimes_{{\mathbb{Z}} [G]}{\mathrm{Det}}_{{\mathbb{Z}} [G]} ( C^\bullet_{K, S, T}) \cong{\mathrm{Det}}_{{\mathbb{Z}} [\mathrm{Gal}({K_i}/{k})]} ( C^\bullet_{K_i, S, T})\]

as $\mathfrak{z}_{K_i / k, S, T}^{(\ell)}$ for every $i \in \{1, \dots, 4 \}$ . Write $\chi_i$ for the trivial character if $i = 1$ and the non-trivial character of $\mathrm{Gal}({K_i}/{k})$ otherwise. The discussion above (in case (i)) then shows that we have

\[e_{\chi_i} \cdot \mathfrak{z}_{K_i / k, S, T}^{(\ell)} = a_i \cdot e_{\chi_i} \cdot z_{K_i / k, S, T}\]

for some $a_i$ in ${\mathbb{Z}}_{(\ell)}^\times$ . It follows that

\[\mathfrak{z}_{K / k, S, T}^{(\ell)} =( \sum_{i = 1}^4 a_i e_{\chi_i}) \cdot z_{K / k, S, T}.\]

If $\ell \neq 2$ , then it is clear that $\lambda^{(\ell)} \,{:\!=}\, \sum_{i = 1}^4 a_i e_{\chi_i}$ belongs to ${\mathbb{Z}}_{(\ell)} [G]^\times$ . For $\ell = 2$ , the scalar $\lambda^{(2)}$ belongs to ${\mathbb{Z}}_{(2)} [G]^\times$ if and only if it belongs to ${\mathbb{Z}}_{(2)} [G]$ because $\mathrm{N}_{{\mathbb{Q}} [G] / {\mathbb{Q}}} (\lambda^{(2)}) = \prod_{i = 1}^4 a_i$ is a unit in ${\mathbb{Z}}_{(2)}$ . Now, $\lambda^{(2)}$ is in ${\mathbb{Z}}_{(2)} [G]$ if and only if, for every $\sigma \in G$ we have that

\[\sum_{i = 1}^4 a_i \chi_i (\sigma) \equiv 0 \mod 4.\]

Note that $\chi_i (\sigma) = \pm 1$ and $a_i \equiv \pm 1 \mod 4$ for all $i \in \{1, \dots, 4\}$ . One can then check explicitly that the above congruence holds if and only if $\prod_{i = 1}^4 a_i \equiv 1 \mod 4$ (cf. also [ Reference Buckingham9 , Lemma 6·3 (v)]). In particular, if we let $b \in \{ \pm 1 \}$ be defined by $b \equiv \prod_{i = 1}^4 a_i \mod 4$ , then $\lambda' \,{:\!=}\, b a_1 e_{\mathbf{1}} + \sum_{i = 1}^3 a_i e_{\chi_i}$ belongs to ${\mathbb{Z}}_{(2)} [G]^\times$ .

As in case (i), we define $e_{K, S, V}$ as the sum of all $e_\chi$ that annihilate ${\mathbb{C}} \otimes_{\mathbb{Z}} X_{K, S \setminus V}$ . The assumption $|S| \gt |V| + 1$ then ensures that $e_{\mathbf{1}}\cdot e_{K, S, V}=0$ and thus that $\lambda^{(2)} e_{K, S, V} = \lambda' e_{K, S, V}$ . Using the map $\Theta^V_{K / k, S}$ defined in (3·4), we obtain the equality

\[{\mathbb{Z}}_{(2)} \otimes_{\mathbb{Z}} \mathrm{im} ( \varepsilon^V_{K / k, S, T})= {\mathbb{Z}}_{(2)} \otimes_{\mathbb{Z}} \lambda' \cdot \mathrm{im} ( \Theta_{K / k, S, T}^V (\mathfrak{z}^{(2)}_{K / k, S, T}))= {\mathbb{Z}}_{(2)} \otimes_{\mathbb{Z}} {\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G]} ( \mathrm{Sel}_{K, S, T})^\#,\]

where the final equality follows from the argument of [ Reference Burns, Kurihara and Sano17 , Theorem 7·5] as in case (i). Since the corresponding identity also holds for each odd $\ell$ , this completes the proof of Theorem 1·3.

Remark 3·2. The only instances of (i) and (ii) in Theorem 1·3 that can neither be treated by the argument used to prove Theorem 1·3 nor Remark 1·11 (i) are the cases in which $|S| = |V| + 1$ and the unique place $v \in S \setminus V$ has full decomposition group in $K / k$ . In any such situation and for large enough V, the equality (1·3) is in fact equivalent to eTNC $(K/k)$ and amounts to a subtle question about signs. To make this more explicit in case (ii) of Theorem 1·3, we suppose that $K / k$ is biquadratic, $|S| = |V| + 1$ , and V is large enough that ${\mathrm{Cl}}_{K, S, T}$ vanishes. Then $\mathcal{O}_{K, S, T}^\times$ is a free ${\mathbb{Z}} [G]$ -module of rank $|V|$ and we can choose an ordered ${\mathbb{Z}} [G]$ -basis $\mathfrak{B}$ of $\mathcal{O}_{K, S, T}^\times$ . Fix an ordering $G = \{ g_1, g_2, g_3, g_4 \}$ and consider the ordered ${\mathbb{Z}}$ -basis $\mathfrak{B}' \,{:\!=}\, \{ g b \mid g \in G, b \in \mathfrak{B}\}$ of $\mathcal{O}_{K, S, T}^\times$ , ordered lexicographically. Similarly, we set $\mathfrak{W} \,{:\!=}\, \{ g w_i \mid g \in G, 1 \leq i \leq |V| \}$ , ordered lexicographically. Then one can show that (1·3) is equivalent to

\[{\det}_{\mathbb{R}} ( \log | b |_w )_{b \in \mathfrak{B}', w \in \mathfrak{W}} \lt 0.\]

(Cf. [ Reference Buckingham9 , Proposition 10·5].) This question does not depend on the ordering on G and, since G is ${\mathbb{Z}} / 2 {\mathbb{Z}} \oplus {\mathbb{Z}} / 2 {\mathbb{Z}}$ , also not on the choice of basis $\mathfrak{B}$ (or the ordering on it) because every unit in ${\mathbb{Z}} [G]$ is of the form $\pm g$ for some $g \in G$ , and so has norm 1.

In the setting of case (i) of Theorem 1·3 one can similarly derive an explicit criterion by using [ Reference Breuning6 , Lemma 3·5].

4. The proof of Theorem 1·1

We now fix a p-elementary extension $K/k$ with Galois group $G \cong ({\mathbb{Z} / {p} \mathbb{Z}})^m$ . Write $\Omega^\ast$ for the set of subgroups H of G of index at most p. The following algebraic observation plays a key role in the sequel.

Lemma 4·1. Set $\mathrm{N}_H = \sum_{\tau \in H} \tau$ for every $H \in \Omega^\ast$ . In ${\mathbb{Z}} [G]$ we then have the equality

\[\sum_{H \in \Omega^\ast} \mathrm{N}_H + \Big ( (p^{m - 1} - 1) - \Big (\sum_{i = 0}^{m - 1} p^i \Big)\Big) \cdot \mathrm{N}_G = p^{m - 1}.\]

Proof. Observe that G is an $\mathbb{F}_p$ -vector space and the (non-trivial) H are exactly the $(m - 1)$ -dimensional subspaces of G. Recall that the trace pairing

\[\mathbb{F}_p^m \times \mathbb{F}_p^m \to \mathbb{F}_p, \quad (v, w) \mapsto \sum_{i = 1}^m v_i w_i\]

is perfect, hence induces a bijection between $(m - 1)$ -dimensional and 1-dimensional subspaces. The number of 1-dimensional subspaces is exactly ${p^{m} - 1}/{p - 1}$ , hence $| \Omega^\ast \setminus \{ G \} |$ is equal to $ {p^{m} - 1}/{p - 1}$ . If we fix $v \in \mathbb{F}_p \setminus \{ 0 \}$ , then the set of all $(m - 1)$ -dimensional subspaces of $\mathbb{F}_p^m$ that contain v is in bijection with all 1-dimensional subspaces of the space $\{ w \in \mathbb{F}_p^m \mid \sum_{i = 1}^m v_i w_i = 0 \}$ , the kernel of the $(1 \times m)$ -matrix v. This space is therefore of dimension $m - 1$ and contains ${p^{m - 1} - 1}/{p - 1}$ subspaces of dimension one. That is, there are exactly ${p^{m - 1} - 1}/{p - 1}$ subgroups $H \in \Omega^\ast \setminus \{ H \}$ that contain a given (non-trivial) element of G. It follows that there are exactly

\begin{align*}\frac{p^{m} - 1}{p - 1} - \frac{p^{m - 1} - 1}{p - 1} & = \frac{(p^m - 1) - (p^{m - 1} - 1)}{p - 1} = \frac{p^{m - 1} ( p - 1)}{(p - 1)} = p^{m - 1}\end{align*}

such H that do not contain a given (non-trivial) element. Thus, each element of G appears in the sum $( \sum_{H \in \Omega^\ast \setminus \{ G \}} \mathrm{N}_H \Big) + p^{m - 1} ( N_G - 1)$ exactly $| \Omega^\ast \setminus \{ G \} |$ many times. From this we obtain

\begin{align*}\Big ( \sum_{H \in \Omega^\ast \setminus \{ G \}} \mathrm{N}_H \Big) + p^{m - 1} ( N_G - 1) &= | \Omega^\ast \setminus \{ G \} | \cdot \mathrm{N}_G = \frac{(p^{m} - 1)}{p - 1} \cdot \mathrm{N}_G = \Big ( \sum_{i = 0}^{m - 1} p^i \Big) \cdot \mathrm{N}_G. \end{align*}

For any integer $r \geq 0$ and $H\in\Omega^\ast$ , we consider the injection

\[\nu_H {\colon} {\mathbb{C}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^r_{{\mathbb{Z}} [G / H]} {\mathcal{O}}_{K^H, S, T}^\times \to {\mathbb{C}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} {\mathcal{O}}_{K, S, T}^\times, \quad a \mapsto |H|^{\mathrm{max}\{0, 1 - r\}} \cdot a\]

that satisfies

(4·5) \begin{equation} \nu_H ( \mathrm{N}_H^r a) = \mathrm{N}_H a \quad \text{ for any } a \in {\mathbb{C}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} {\mathcal{O}}_{K, S, T}^\times.\end{equation}

As a straightforward application of Lemma 4·1 we obtain the following consequence that recovers [ Reference Sands51 , Proposition 4·5] in the case $p = 2$ .

Proposition 4·2. In ${\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} {\mathcal{O}}_{K, S, T}^\times$ we have the equality

\[\varepsilon^V_{K / k, S, T} = \frac{1}{p^{m - 1}} \cdot \Big ( \sum_{H \in \Omega^\ast} \nu_H \big( \varepsilon_{K^H / k, S, T}^V \big) + \Big ( (p^{m - 1} - 1) - \Big (\sum_{i = 0}^{m - 1} p^i \Big) \Big) \cdot \nu_G \big ( \varepsilon_{k / k, S, T}^V \big) \Big).\]

Proof. Using Lemma 4·1 (a), equation (4·5), and the norm relations for Rubin–Stark elements [ Reference Rubin48 , Proposition 6·1] we calculate

\begin{align*}p^{m - 1} \cdot \varepsilon_{K / k, S, T}^V & = \Big ( \sum_{H \in \Omega^\ast} \mathrm{N}_H + \Big ( (p^{m - 1} - 1) - \Big (\sum_{i = 0}^{m - 1} p^i \Big)\Big) \cdot \mathrm{N}_G \Big) \cdot \varepsilon_{K / k, S, T}^V \\& = \Big ( \sum_{H \in \Omega^\ast} \nu_H \big ( \mathrm{N}_H^{|V|} \varepsilon_{K / k, S, T}^V\big) \Big) + \Big ( (p^{m - 1} - 1) - \Big (\sum_{i = 0}^{m - 1} p^i \Big) \Big) \cdot \nu_G \big (\mathrm{N}_G^{|V|} \varepsilon_{K / k, S, T}^V\big) \\& = \Big ( \sum_{H \in \Omega^\ast} \nu_H \big ( \varepsilon_{K^H / k, S, T}^V \big) \Big) + \Big ( (p^{m - 1} - 1) - \Big (\sum_{i = 0}^{m - 1} p^i \Big) \Big) \cdot \nu_G \big (\varepsilon_{k / k, S, T}^V \big),\end{align*}

as required to prove the claim.

To prepare for the proof of Theorem 1·1, we now first give a preliminary result in which we write $I_G \,{:\!=}\, \ker \{ {\mathbb{Z}} [G] \to {\mathbb{Z}} \}$ for the absolute augmentation ideal of ${\mathbb{Z}} [G]$ and, given a ${\mathbb{Z}} [G]$ -module M and non-negative integer r, define its $r$ - th exterior bidual’ to be

\[\bigcap\nolimits^r_{{\mathbb{Z}} [G]} M \,{:\!=}\, \big \{ a \in {\mathbb{Q}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} M \mid F (a) \in {\mathbb{Z}} [G] \text{ for all } F \in \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} \mathrm{Hom}_{{\mathbb{Z}} [G]} (M, {\mathbb{Z}} [G]) \big \}.\]

Lemma 4·3. Fix a Rubin datum (S, V, T) for $K / k$ and a non-negative integer c that satisfies

\[|S| \geq \max \{ |V| + 2, |V| - s_p + (p - 1)(m - 1) + 2 + c\},\]

where $s_p \,{:\!=}\, \dim_{\mathbb{F}_p} ({\mathrm{Cl}}_{k, S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p)$ denotes the p-rank of ${\mathrm{Cl}}_{k, S, T}$ . If the equality (1·3) of Conjecture 1·10 holds for all extensions $L / k$ in $\Omega$ , then $\varepsilon^V_{K / k, S, T}$ belongs to $I_G^c \cdot \bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S, T}^\times$ (so, in particular, the Rubin–Stark conjecture is valid for $(K/k,S,V,T)$ ).

Proof. At the outset we note that, for any $H \in \Omega^\ast$ , the map $\nu_H$ restricts to an injection $\bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} \mathcal{O}_{K^H, S, T}^\times \to \bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S, T}^\times$ (cf. [ Reference Burns, Kurihara and Sano17 , Remark 4·13]). By Proposition 4·2, it is hence sufficient to prove that $\varepsilon^V_{K^H / k, S, T}$ belongs to $p^{m - 1} I_{G / H}^c \bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} \mathcal{O}_{K^H, S, T}^\times$ for every $H \in \Omega^\ast$ . By the assumption $|S| \geq |V| + 2$ , we may and will assume $K^H \neq k$ so that $K^H \in \Omega$ .

We now first claim that for this purpose it is enough to prove that $\mathrm{im} (\varepsilon^V_{K^H / k, S, T})$ is contained in $p^{m - 1} I_{G / H}^{ 1 + c}$ . To justify this, we apply Lemma 2·3 (ii) to fix a representative $[P_0 \stackrel{\phi}{\to} P_1]$ of the complex $C^\bullet_{K^H, S, T}$ in $D^{\mathrm{p}}(\mathbb{Z}[G/H])$ . From [ Reference Sakamoto49 , Lemma B·6] we then obtain an exact sequence

(4·6) \begin{align} 0 \longrightarrow & \bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} \mathcal{O}_{K^H, S, T}^\times \longrightarrow \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} P_0 \stackrel{\phi}\longrightarrow P_1 \otimes_{{\mathbb{Z}} [G / H]} \bigwedge\nolimits^{|V| - 1}_{{\mathbb{Z}} [G/ H]} P_0. \end{align}

In particular, we may view $\varepsilon^{V}_{K^H / k, S, T}$ as an element of $\bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} P_0$ . Now, if $\mathrm{im} (\varepsilon^V_{K^H / k, S, T})$ , which equals $ \{F ( \varepsilon^{V}_{K^H / k, S, T}) \mid F \in \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} \mathrm{Hom}_{{\mathbb{Z}} [G]}(P_0, {\mathbb{Z}} [G]) \}$ , is contained in $p^{m - 1} I_{G / H}^{1 + c}$ , then $\varepsilon^{V}_{K^H / k, S, T}$ belongs to the module $p^{ m - 1} I_{G / H}^{1 + c} \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} P_0$ (cf. [ Reference Burns, Kurihara and Sano17 , Proposition 4·17]). We may therefore write $\varepsilon^{V}_{K^H / k, S, T} = p^{m - 1} (\sigma_H - 1)^{ 1 + c} a$ with $\sigma_H$ a generator of $G / H$ and a an element of $\bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} P_0$ . From the exact sequence (4·6) we then see that

\[p^{m - 1} (\sigma_H - 1)^{1 + c} \cdot \phi (a) =\phi ( p^{m - 1} (\sigma_H - 1)^{1 + c} a) = \phi ( \varepsilon^{V}_{K^H / k, S, T}) = 0.\]

Since $P' \,{:\!=}\, P_1 \otimes_{{\mathbb{Z}} [G / H]} \bigwedge\nolimits^{|V| - 1}_{{\mathbb{Z}} [G/ H]} P_0$ is ${\mathbb{Z}}$ -torsion free, this implies that $(\sigma_H - 1)^{1 + c} \cdot \phi (a)$ vanishes. As $(\sigma_H - 1)P'$ and $(P')^{G / H} = \ker \{ P' \stackrel{\cdot(\sigma_H - 1)}{\longrightarrow} P' \}$ intersect trivially because P’ is $G/H$ -cohomologically trivial, it then follows by induction on c that $(\sigma_H - 1) \phi (a)$ vanishes. Exactness of (4·6) now shows that $(\sigma_H - 1) a$ belongs to $\bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} \mathcal{O}_{K^H, S, T}^\times$ , as required to prove that $\varepsilon^V_{K^H, S, T}$ belongs to $p^{m - 1} (\sigma_H - 1)^c \bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G / H]} \mathcal{O}_{K^H, S, T}^\times$ .

It now remains to prove that $\mathrm{im} (\varepsilon^V_{K^H / k, S, T})$ is contained in $p^{m - 1} I_{G / H}^{1 + c}$ . We may and will assume that no place in $S \setminus V$ splits completely in $K^H / k$ , since otherwise $\varepsilon_{K^H / k, S, T}^V$ vanishes. Thus, every place in $S \setminus V$ has full decomposition group in $K^H / k$ . Since we assume (1·3) to hold for $K^H / k$ it is enough to prove, in this situation, that ${\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} (\mathrm{Sel}_{K^H, S, T})^\#\subseteq p^{m - 1}I_{G / H}^{1 + c}$ .

To verify this inclusion, we use the ‘transpose’ Selmer group defined in Lemma 2·3 (i) and the equality

\[{\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} (\mathrm{Sel}_{K^H, S, T})^\# = {\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} ( \mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T})\]

of [ Reference Burns, Kurihara and Sano17 , Lemma 2·8]. It then suffices to verify that ${\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} ( \mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T})\subseteq p^{m - 1} I_{G / H}^{1+c}$ .

For this purpose, we first note that $Y_{K^H, V}$ is a free direct summand of $X_{K^H,S}\cong Y_{K^H, V} \oplus X_{K^H, S\setminus V}$ , hence also of $\mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T}$ . We may thus find a ${\mathbb{Z}} [G / H]$ -module M such that $\mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T} \cong M \oplus Y_{K^H, V}$ and one has the following modified version of the exact sequence in Lemma 2·3 (i):

(4·7) \begin{align} 0 \longrightarrow {\mathrm{Cl}}_{K^H,S, T} \longrightarrow M \longrightarrow X_{K^H, S\setminus V} \longrightarrow 0. \end{align}

Setting $d \,{:\!=}\, | S \setminus V|$ , one has $X_{K^H, S \setminus V} \cong {\mathbb{Z}}^{d - 1}$ and fixing again a generator $\sigma_H$ of $G/H$ ,

\[ {\operatorname{Fitt}}^0_{{\mathbb{Z}} [G / H]} (X_{K^H, S \setminus V} ) = I_{ G / H}^{d - 1} = (\sigma_H - 1)^{d - 1} {\mathbb{Z}} [G / H]. \]

In particular, ${\operatorname{Fitt}}^0_{{\mathbb{Z}} [G / H]} ( X_{K^H, S \setminus V})$ is a principal ideal and so we may apply [ Reference Johnston and Nickel31 , Lemma 2·5 (ii)] to the exact sequence (4·7) to infer that

\begin{align*}{\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} (\mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T})= {\operatorname{Fitt}}^{0}_{{\mathbb{Z}} [G / H]} (M) & = {\operatorname{Fitt}}^0_{{\mathbb{Z}} [G/ H]} ( {\mathrm{Cl}}_{K^H,S, T}) \cdot {\operatorname{Fitt}}^0_{{\mathbb{Z}} [G / H]} ( X_{K^H, S \setminus V}) \\& = {\operatorname{Fitt}}^0_{{\mathbb{Z}} [G/ H]} ( {\mathrm{Cl}}_{K^H,S, T}) \cdot I_{G / H}^{d - 1}.\end{align*}

Fix a place $v \in S \setminus V$ and recall that we may assume that v has full decomposition group in $K^H / k$ . If we write $H_{S, T} (K^H)$ and $H_{S, T} (k)$ for the (S, T)-ray class fields of $K^H$ and k, respectively, then $H_{S, T} (k) \cap K^H = k$ since v splits completely in $H_{S, T} (k)$ . Thus, we may identify $\mathrm{Gal}({H_{S, T} (k)}/{k}) \cong \mathrm{Gal}({K^H \cdot H_{S, T} (k)}/{K^H})$ and hence the restriction map $\mathrm{Gal}({H_{S, T} (K^H)}/{K^H}) \to \mathrm{Gal}({H_{S, T} (k)}/{k})$ is surjective. By class field theory, the restriction map corresponds to the norm map ${\mathrm{Cl}}_{K^H,S, T} \to {\mathrm{Cl}}_{k,S, T}$ and so, in particular, the map ${\mathrm{Cl}}_{K^H,S, T} \to {\mathrm{Cl}}_{k,S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p \cong ({\mathbb{Z} / {p} \mathbb{Z}})^{s_p}$ is surjective as well. This map is $G/ H$ -equivariant, thus we obtain an inclusion

\[{\operatorname{Fitt}}^0_{{\mathbb{Z}}[G / H]} ( {\mathrm{Cl}}_{K^H,S, T}) \subseteq {\operatorname{Fitt}}^0_{{\mathbb{Z}} [G / H]} \big( ({\mathbb{Z}} /p {\mathbb{Z}})^{s_p} \big) = \prod_{i = 1}^{s_p} ( p {\mathbb{Z}} [G / H] + I_{G / H})\subseteq \sum_{i = 0}^{s_p} p^i I_{G / H}^{s_p - i}.\]

By the previous discussion, we therefore have an inclusion

\begin{align*} {\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} (\mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T})& \subseteq \big ( \sum_{i = 0}^{s_p} p^i I_{G / H}^{s_p - i} \big) I_{G / H}^{d - 1} \\ &= \sum_{i = 0}^{s_p} p^i I_{G / H}^{s_p - i + d - 1} \\&\subseteq \big ( \sum_{i = 0}^{s_p} p^i I_{G / H}^{s_p - i + d - c - 1} \big) \cdot I_{G / H}^c.\end{align*}

Since $\sigma_H$ is of order p, we have $(\sigma_H - 1)^p \equiv \sigma_H^p - 1 = 0 \mod p$ and so $(\sigma_H - 1)^p$ is divisible by p in ${\mathbb{Z}} [G / H]$ . Noting that the quotient ${\mathbb{Z}} [G / H] / I_{G / H} \cong {\mathbb{Z}}$ is torsion-free, we see that $(\sigma_H - 1)^p$ is in fact divisible by $p (\sigma_H - 1)$ . From this it follows that $(\sigma_H - 1)^{s_p - i + d -c - 1}$ is divisible by $p^{\max \{ 0, \lfloor (s_p - i + d - c - 2) / (p -1) \rfloor\}} (\sigma_H - 1)$ . As a consequence,

\[\sum_{i = 0}^{s_p} p^i I_{G / H}^{s_p - i + d - c - 1}\subseteq\sum_{i = 0}^{s_p} p^{i + \lfloor (s_p - i + d - c - 2) / (p -1) \rfloor} I_{G / H}\subseteq p^{\lfloor (s_p + d - c - 2) / (p -1) \rfloor} I_{G / H},\]

where we have used that

\[i + \lfloor \frac{s_p - i + d - c - 2}{p -1} \rfloor = \lfloor \frac{(p - 1) i + s_p - i + d - c - 2}{p -1} \rfloor \geq \lfloor \frac{s_p + d - c - 2}{p -1} \rfloor\]

as a consequence of $ p -1 \geq 1$ . Now,

\begin{align*}\frac{d + s_p - c - 2}{p -1} =\frac{|S| - |V| + s_p - c - 2}{p -1} &\geq m - 1{\quad \Leftrightarrow \quad}\\|S|& \geq |V| - s_p + (p - 1) ( m - 1) + 2 + c\end{align*}

and so ${\operatorname{Fitt}}^{|V|}_{{\mathbb{Z}} [G / H]} (\mathrm{Sel}^{\mathrm{tr}}_{K^H, S, T})$ is contained in $p^{m - 1} I_{G / H}^{1 + c}$ as soon as $|S| \geq |V| - s_p + (p - 1) ( m - 1) + 2 + c$ . This concludes the proof that $\mathrm{im} (\varepsilon^V_{K / k, S, T})$ is contained in $p^{m - 1} I_{G / H}^{1 + c}$ , as required.

We can now give the proof of Theorem 1·1.

Proof (of Theorem 1·1): Write $H_{k, p}$ and $H_K$ for the extensions of k and K that correspond with ${\mathrm{Cl}}_{k, S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p$ and ${\mathrm{Cl}}_{K, S, T}$ via class field theory. That is, $H_{k, p}$ is the maximal p-elementary abelian extension of k that is unramified outside T and in which all places in S split completely, and $H_K$ is the maximal abelian extension of K that is unramified outside $T_K$ and in which all places in $S_K$ split completely. Note that $H_K$ is Galois over k. By Cebotarev’s density theorem, we may then choose a finite set W of prime ideals of k that has all of the following properties:

  1. (i) W is disjoint from $S \cup T$ ;

  2. (ii) every place in W splits completely in $K \cdot H_{k, p}$ ;

  3. (iii) $\{ {\mathrm{Frob}}_{\mathfrak{p}} \mid {\mathfrak{p}} \in W \}$ is a generating set for $\mathrm{Gal}({H_K}/{ K \cdot H_{k, p}})$ .

In particular, one has ${\mathrm{Cl}}_{k, S', T} \otimes_{\mathbb{Z}} {\mathbb{Z}}_p = {\mathrm{Cl}}_{k, S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p$ with $S' \,{:\!=}\, S \cup W$ . Class field theory then provides for a commutative diagram

where the right-hand vertical arrow is the natural restriction map and $\widetilde{\mathrm{N}}_{K / k}$ is the composite of the ‘norm’ map ${\mathrm{Cl}}_{K, S', T} \to {\mathrm{Cl}}_{k, S', T}$ induced by the norm $\mathrm{N}_{K / k} {\colon} K^\times \to k^\times$ and the projection $ {\mathrm{Cl}}_{k, S', T} \to {\mathrm{Cl}}_{k, S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p$ . As a consequence, we obtain a G-equivariant isomorphism ${\mathrm{Cl}}_{K, S', T} \cong \widetilde{\mathrm{N}}_{K / k} ( {\mathrm{Cl}}_{K, S', T})$ , and hence an exact sequence of ${\mathbb{Z}} [G]$ -modules

(4·8) \begin{align} 0 \longrightarrow & \mathcal{O}_{K, S, T}^\times\longrightarrow \mathcal{O}_{K, S', T}^\times \stackrel{\psi}\longrightarrow Y_{K, W} \stackrel{\delta}\longrightarrow {\mathrm{Cl}}_{K, S, T} \longrightarrow \widetilde{\mathrm{N}}_{K / k} ( {\mathrm{Cl}}_{K, S', T}) \longrightarrow 0 \end{align}

with $\psi {\colon} \mathcal{O}_{K, S', T}^\times \to Y_{K, W}$ the map $ a \mapsto \sum_{w \in W_K} {\mathrm{ord}}_w (a) w$ and $\delta {\colon} Y_{K, W} \to {\mathrm{Cl}}_{K, S, T}$ sends $w \in W_K$ to the class of w in ${\mathrm{Cl}}_{K, S, T}$ .

Fix a labelling $W = \{ v_{|S| + 1}, \dots, v_{|S'|}\}$ and, for each $j \in \{ |S| + 1, \dots, |S'|\}$ , an extension $w_j$ of $v_j$ to K. By condition (ii) every place of K above a fixed $v_j$ is of the form $\sigma w_j$ for some $\sigma \in G$ , which allows us to define a map $w_j^\ast {\colon} Y_{K, W} \to {\mathbb{Z}} [G]$ by sending $\sum_{w \in W_K} a_w w$ to $\sum_{\sigma \in G} a_{\sigma w} \sigma$ (so $w_j^\ast$ is the ‘dual’ of $w_j$ ). Now, if $a \in \mathcal{O}_{K, S_j, T}^\times$ with $S_j \,{:\!=}\, S \cup \{ v_j \}$ , then

\[\psi (a) = \sum_{l = |S| + 1}^{|S'|} (w_l^\ast \circ \psi) (a) w_l = (w_j^\ast \circ \psi) (a) w_j\]

belongs to the kernel of $\delta$ by exactness of (4·8). This shows that $(w_j^\ast \circ \psi) (a)$ annihilates the class of $w_j$ in ${\mathrm{Cl}}_{K, S, T}$ . Since $A \,{:\!=}\, \ker \{ {\mathrm{Cl}}_{K, S, T} \to \widetilde{\mathrm{N}}_{K / k} ( {\mathrm{Cl}}_{K, S', T}) \}$ is generated over ${\mathbb{Z}} [G]$ by $\delta (w_{|S| + 1}), \dots, \delta (w_{|S'|})$ by exactness of (4·9), we have thereby proved that

(4·9) \begin{equation} \bigcap_{j = |S| + 1}^{|S'|} (w_j^\ast \circ \psi) ( \mathcal{O}_{K, S_j, T}^\times) \subseteq \mathrm{Ann}_{{\mathbb{Z}} [G]} (A).\end{equation}

We now claim that $\mathrm{im} (\varepsilon^V_{K / k, S, T})$ is contained in $I_G$ times the intersection on the left- hand side of (4·9). To do this, we first note that $s'_p \,{:\!=}\, \dim_{\mathbb{F}_p} ( {\mathrm{Cl}}_{k, S', T} \otimes_{\mathbb{Z}} \mathbb{F}_p)$ is equal to $s_p$ because ${\mathrm{Cl}}_{k, S', T} \otimes_{\mathbb{Z}} \mathbb{F}_p = {\mathrm{Cl}}_{k, S, T} \otimes_{\mathbb{Z}} \mathbb{F}_p$ by condition (ii). Setting $V' \,{:\!=}\, V \cup W$ , it then follows that

\begin{align*}|S'| = |W| + |S|& \geq |W| + \max \{ |V| + 2, |V| - s_p + (p - 1)(m - 1) + 3 \}\\& \geq \max \{ |V'| + 2, |V'| - s'_p + (p - 1)(m - 1) + 3 \}.\end{align*}

By Lemma 4·3, we therefore have that $\varepsilon^{V'}_{K / k, S', T}$ belongs to $I_G \cdot \bigcap\nolimits^{|V'|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S', T}^\times$ , hence can be written as $\varepsilon^{V'}_{K / k, S', T} = \sum_{i = 1}^t x_i a_i$ with a natural number t and elements $x_1, \dots, x_t \in I_G$ and $a_1, \dots, a_t \in \bigcap\nolimits^{|V'|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S', T}^\times$ .

At this stage, it is convenient to introduce some general notation. For a ${\mathbb{Z}} [G]$ -module M, we denote its ${\mathbb{Z}} [G]$ -linear dual by $M^\ast \,{:\!=}\, \mathrm{Hom}_{{\mathbb{Z}} [G]} ( M, {\mathbb{Z}} [G])$ . Given $f \in M^\ast$ and an integer $r \geq 1$ , we then define a map

\begin{align*} f^{(r)} {\colon} \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} M &\to \bigwedge\nolimits^{r - 1}_{{\mathbb{Z}} [G]} M, \\ c_1 \wedge \dots \wedge c_r &\mapsto \sum_{i = 1}^r (-1)^i \cdot f (c_i) \cdot c_1 \wedge \dots \wedge \widehat{c_i} \wedge \dots \wedge c_r,\end{align*}

where the notation $\widehat{c_i}$ means omission of $c_i$ . Iteration then yields a morphism

\begin{align*} \xi^{r, s} {\colon} \bigwedge\nolimits^s_{{\mathbb{Z}} [G]} M& \to \mathrm{Hom}_{{\mathbb{Z}} [G]} ( \bigwedge\nolimits^r_{{\mathbb{Z}} [G]} M, \bigwedge\nolimits^{r - s}_{{\mathbb{Z}} [G]} M),\\ f_1 \wedge \dots \wedge f_s &\mapsto f_s^{(r - s + 1)} \circ \dots \circ f_1^{(r)}\end{align*}

for every $s \leq r$ . (The special case $r = s$ of this construction was already discussed in Definition 2·1.) By abuse of notation we will simply write $f_1 \wedge \dots \wedge f_s$ in place of $\xi^{r, s} (f_1 \wedge \dots \wedge f_s)$ .

Returning now to the concrete setting at hand, we set $\psi_l \,{:\!=}\, w_l^\ast \circ \psi$ and, for every $f \in \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} (\mathcal{O}_{K, S', T}^\times)^\ast$ and $j \in \{ |S| + 1, \dots, |S'| \}$ , define the map

\[\Phi_{j, f} \,{:\!=}\, \big( (\bigwedge\nolimits_{\substack{|S| + 1 \leq l \leq |S'| \\ l \neq j}} \psi_l) \wedge f\big) {\colon} {\mathbb{R}} \otimes_{\mathbb{Z}} \bigwedge\nolimits^{|V'|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S', T}^\times \to {\mathbb{R}} \otimes_{\mathbb{Z}} \mathcal{O}_{K, S', T}^\times.\]

For every $g \in (\mathcal{O}_{K, S', T}^\times)^\ast$ and $i\in \{1, \dots, t\}$ , one then has that $(g \circ \Phi_{j, f}) ( a_i)$ belongs to ${\mathbb{Z}} [G]$ . This shows that

\[\Phi_{j, f} (a_i) \in\big \{ a \in {\mathbb{R}} \otimes_{\mathbb{Z}} \mathcal{O}_{K, S', T}^\times \mid g (a) \in{\mathbb{Z}} [G]\text{ for all } g \in (\mathcal{O}_{K, S', T}^\times)^\ast \} = \mathcal{O}_{K, S', T}^\times\]

because $\mathcal{O}_{K, S', T}^\times$ is ${\mathbb{Z}}$ -torsion free. In addition, $\psi_l \circ \Phi_{j, f} = \Phi_{j, f} \wedge \psi_l = 0$ for all $l \neq j$ so that in fact $\Phi_{j, f} (a_i) \in \bigcap_{l \neq j} \ker \psi_l = \mathcal{O}_{K, S_j, T}^\times$ . A similar argument also shows that $\big( \bigwedge\nolimits_{|S| + 1\leq l \leq |S'|} \psi_l \big) (a_i)$ belongs to $\bigcap\nolimits^{|V|}_{{\mathbb{Z}} [G]} \mathcal{O}_{K, S, T}^\times$ .

Note that $\mathcal{O}_{K, S', T}^\times / \mathcal{O}_{K, S, T}^\times$ is ${\mathbb{Z}}$ -torsion free (by (4·8)), hence that the natural restriction map $\mathrm{res} {\colon} (\mathcal{O}_{K, S', T}^\times)^\ast \to (\mathcal{O}_{K, S, T}^\times)^\ast$ is surjective. For any $f \in \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} (\mathcal{O}_{K, S, T}^\times)^\ast$ we can therefore find $\widetilde{f} \in \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} (\mathcal{O}_{K, S', T}^\times)^\ast$ with $(\bigwedge^{|V|} \mathrm{res}) (\widetilde{f}) = f$ . For any $j \in \{ |S| + 1, \dots, |S'| \}$ , we then obtain that

\begin{align*} \big ( \big( \bigwedge\nolimits_{|S| + 1\leq l \leq |S'|} \psi_l \big) \wedge f \big) (a_i) = \pm \psi_j (( \Phi_{j, \widetilde{f}}) ( a_i)) \subseteq \psi_j ( \mathcal{O}_{K, S_j, T}^\times).\end{align*}

Since this inclusion holds for every such j, we infer that in fact

\[\Big ( \big( \bigwedge\nolimits_{|S| + 1\leq l \leq |S'|} \psi_l \big) \wedge f \big) (a_i) \subseteq {\bigcap}_{j = |S| + 1}^{|S'|} \psi_j ( \mathcal{O}_{K, S_j, T}^\times).\]

Now, by [ Reference Sano53 , Proposition 3·6] (see also [ Reference Rubin48 , Proposition 5·2]) one has

\[\big( \bigwedge\nolimits_{|S| + 1\leq l \leq |S'|} \psi_l \big) (\varepsilon^{V'}_{K / k, S', T}) = \pm \varepsilon^V_{K / k, S, T}\]

and so, for any $f \in \bigwedge\nolimits^{|V|}_{{\mathbb{Z}} [G]} (\mathcal{O}_{K, S, T}^\times)^\ast$ , we deduce that

\begin{align*} f ( \varepsilon^V_{K / k, S, T}) & = \pm \big( \big( \bigwedge\nolimits_{|S| + 1\leq l \leq |S'|} \psi_l \big) \wedge f \big) ( \varepsilon^{V'}_{K / k, S', T}) \\ & = \pm \sum_{i = 1}^t x_i \cdot \big( \big( \bigwedge\nolimits_{|S| + 1\leq l \leq |S'|} \psi_l \big) \wedge f \big) (a_i) \\ &\subseteq I_G \cdot {\bigcap}_{j = |S| + 1}^{|S'|} \psi_j ( \mathcal{O}_{K, S_j, T}^\times),\end{align*}

as claimed. From (4·9), it now follows that $\mathrm{im} (\varepsilon^V_{K / k, S, T})$ is contained in $I_G\cdot \mathrm{Ann}_{{\mathbb{Z}} [G]} (A)$ . As $\widetilde{\mathrm{N}}_{K / k} ( {\mathrm{Cl}}_{K, S', T})$ (which carries the trivial G-action) is annihilated by $I_G$ , we conclude from the tautological exact sequence

\begin{align*}0 \longrightarrow A \longrightarrow {\mathrm{Cl}}_{K, S, T} \longrightarrow \widetilde{\mathrm{N}}_{K / k} ( {\mathrm{Cl}}_{K, S', T}) \longrightarrow 0\end{align*}

that any element in $\mathrm{im} (\varepsilon^V_{K / k, S, T})$ annihilates ${\mathrm{Cl}}_{K, S, T}$ , as required to prove Theorem 1·1.

Acknowledgements

The authors would like to extend their gratitude to Werner Bley, David Burns and Andreas Nickel for helpful comments on an earlier version of this article. The first author moreover thanks Werner Bley for introducing him to the article [ Reference Rubin48 ] during a reading seminar at LMU Munich in 2018 and for asking the question to what degree [ Reference Rubin48 , Theorem 3·5] extends to extensions of degree p, which served as motivation for Theorem 1·3.

The first author wishes to acknowledge the financial support of the Engineering and Physical Sciences Research Council [EP/W522429/1, EP/W524335/1]. The second author acknowledges support for this article as part of Grants CEX2019-000904-S, PID2019-108936GB-C21 and PID2022-142024NB-I00 funded by MCIN/AEI/ 10.13039/501100011033.

References

Atsuta, M. and Kataoka, T.. On the minus component of the equivariant Tamagawa number conjecture for $\mathbb{G}_m$ . Doc. Math. 28 (2023), 419511.CrossRefGoogle Scholar
Bley, W.. ‘Elliptic curves and module structure over Hopf orders’ and ‘The conjecture of Chinburg–Stark for abelian extensions of quadratic imaginary fields’. (Habilitationsschrift, Universität Augsburg, 1998).Google Scholar
Bley, W.. Wild Euler systems of elliptic units and the equivariant Tamagawa number conjecture. J. Reine Angew. Math. 577 (2004), 117146.Google Scholar
Bley, W.. Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field. Doc. Math. 11 (2006), 73118.CrossRefGoogle Scholar
Breuning, M.. Equivariant local epsilon constants and étale cohomology. J. London Math. Soc. (2) 70 (2004), 289–306.CrossRefGoogle Scholar
Breuning, M.. On equivariant global epsilon constants for certain dihedral extensions. Math. Comp. 73 (2004), 881–898.Google Scholar
Buckingham, P.. The canonical fractional Galois ideal at $s=0$ . J. Number Theory 128 (2008), 17491768.CrossRefGoogle Scholar
Buckingham, P.. The fractional Galois ideal for arbitrary order of vanishing. Int. J. Number Theory 7 (2011), 8799.CrossRefGoogle Scholar
Buckingham, P.. The equivalence of Rubin’s conjecture and the ETNC/LRNC for certain biquadratic extensions. Glasg. Math. J. 56 (2014), 335353.CrossRefGoogle Scholar
Bullach, D. Burns, D. Daoud, A. and Seo, S.. Dirichlet L-series at $s = 0$ and the scarcity of Euler systems. Preprint, ArXiv:2111.14689 (2021).Google Scholar
Bullach, D. and Hofer, M.. The equivariant Tamagawa Number Conjecture for abelian extensions of imaginary quadratic fields. Doc. Math. 28 (2023), 369418.CrossRefGoogle Scholar
Burns, D.. An introduction to the equivariant Tamagawa number conjecture: the relation to Stark’s conjecture. In Arithmetic of L-functions IAS/Park City Math. Ser., vol. 18 (Amer. Math. Soc., Providence, RI, 2011), pp. 125152.CrossRefGoogle Scholar
Burns, D.. On derivatives of Artin L-series. Invent. Math. 186 (2011), 291–371.Google Scholar
Burns, D. and Flach, M.. Tamagawa numbers for motives with (noncommutative) coefficients. II. Amer. J. Math. 125 (2003), 475512.CrossRefGoogle Scholar
Burns, D. and Greither, C.. On the equivariant Tamagawa number conjecture for Tate motives. Invent. Math. 153 (2003), 303359.CrossRefGoogle Scholar
Burns, D. and Johnston, H.. A non-abelian Stickelberger theorem. Compositio Math. 147 (2011), 3555.CrossRefGoogle Scholar
Burns, D. Kurihara, M. and Sano, T.. On zeta elements for $\mathbb{G}_m$ . Doc. Math. 21 (2016), 555626.CrossRefGoogle Scholar
Burns, D. Sakamoto, R. and Sano, T.. On the theory of higher rank Euler, Kolyvagin and Stark systems, II. Preprint ArXiv:1805.08448 (2019).Google Scholar
Cassou-Noguès, P.. Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math. 51 (1979), 2959.CrossRefGoogle Scholar
Curtis, C. W. and Reiner, I. Methods of representation theory, vol. I (John Wiley & Sons, Inc., New York, 1981). With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication.Google Scholar
Dasgupta, S. and Kakde, M.. On the Brumer–Stark Conjecture. Ann. of Math. (2) 197 (2023), 289388.CrossRefGoogle Scholar
Dasgupta, S. Kakde, M. and Silliman, J.. On the equivariant Tamagawa number conjecture. Preprint, ArXiv:2312.09849 (2023).Google Scholar
Dasgupta, S. Kakde, M., Silliman, J. and Wang, J.. The Brumer–Stark Conjecture over $\mathbb{Z}$ . Preprint, ArXiv:2310.16399 (2023).Google Scholar
Deligne, P. and Ribet, K. A.. Values of abelian L-functions at negative integers over totally real fields. Invent. Math. 59 (1980), 227286.CrossRefGoogle Scholar
Dummit, D. S. Sands, J. W. and Tangedal, B.. Stark’s conjecture in multi-quadratic extensions, revisited 2003. Les XXIIèmes Journées Arithmetiques, vol. 15 (Lille, 2001), pp. 8397.CrossRefGoogle Scholar
Ellerbrock, N. and Nickel, A.. Integrality of Stickelberger elements and annihilation of natural Galois modules. Preprint, ArXiv:2203.12945 (2022)Google Scholar
Flach, M.. The equivariant Tamagawa number conjecture: a survey. In Stark’s conjectures: recent work and new directions. Contemp. Math. vol. 358. (Amer. Math. Soc., Providence, RI, 2004), pp. 79125. With an appendix by C. Greither.Google Scholar
Flach, M.. On the cyclotomic main conjecture for the prime 2. J. Reine Angew. Math. 661 (2011), 136.CrossRefGoogle Scholar
Grant, D.. Units from 5-torsion on the Jacobian of $y^2=x^5+1/4$ and the conjectures of Stark and Rubin. J. Number Theory 77 (1999), 227251.CrossRefGoogle Scholar
Gross, B. H.. On the values of abelian L-functions at s= 0. J. Fac. Sci. Univ. Tokyo Sect. IA Math 35 (1988), 177197.Google Scholar
Johnston, H. and Nickel, A.. Noncommutative Fitting invariants and improved annihilation results. J. Lond. Math. Soc. (2) 88 (2013), 137160.CrossRefGoogle Scholar
Johnston, H. and Nickel, A.. On the equivariant Tamagawa number conjecture for Tate motives and unconditional annihilation results. Trans. Amer. Math. Soc. 368 (2016), 65396574.CrossRefGoogle Scholar
Johnston, H. and Nickel, A.. On the non-abelian Brumer-Stark conjecture and the equivariant Iwasawa main conjecture. Math. Z. 292 (2019), 12331267.CrossRefGoogle Scholar
Johnston, H. and Nickel, A.. On the p-adic Stark conjecture at $s = 1$ and applications. J. London Math. Soc. (2) 101 (2020), 13201354. With an appendix by Tommy Hofmann, Johnston and Nickel.CrossRefGoogle Scholar
Kato, K.. Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via $B_{\mathrm{dR}}$ . I. In Arithmetic Algebraic Geometry (Trento, 1991). Lecture Notes in Math., vol. 1553 (Springer, Berlin, 1993), pp. 50163.Google Scholar
Kim, S. Y.. On the equivariant Tamagawa number conjecture for quaternion fields. PhD thesis. King’s College, London (2003).Google Scholar
Macías Castillo, D.. On higher-order Stickelberger-type theorems for multi-quadratic extensions. Int. J. Number Theory 8 (2012), 95110.CrossRefGoogle Scholar
McGown, K. J. Sands, J. W. and Vallières, D.. Numerical evidence for higher order Stark-type conjectures. Math. Comp. 88 (2019), 389420.CrossRefGoogle Scholar
Motose, K.. Finite groups having exactly one non-linear irreducible character. Bull. Fac. Sci. Technol. Hirosaki Univ. 9 (2007), 101113.Google Scholar
Navilarekallu, T.. On the equivariant Tamagawa number conjecture for $A_4$ -extensions of number fields. J. Number Theory 121 (2006), 6789.CrossRefGoogle Scholar
Nickel, A.. On the equivariant Tamagawa number conjecture in tame CM-extensions. Math. Z. 268 (2011), 135.CrossRefGoogle Scholar
Nickel, A.. Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture. J. Reine Angew. Math. 719 (2016), 101132.CrossRefGoogle Scholar
Nickel, A.. Notes on noncommutative fitting invariants. In Development of Iwasawa Theory—the centennial of K. Iwasawa’s birth. Adv. Stud. Pure Math., vol. 86 (Math. Soc. Japan, Tokyo, 2020), pp. 2760. With an appendix by Henri Johnston and Andreas Nickel.Google Scholar
Nickel, A.. The strong Stark conjecture for totally odd characters. Proc. Amer. Math. Soc. 152 (2024), 147162.Google Scholar
Nomura, J.. Integrality of Stickelberger elements attached to unramified extensions of imaginary quadratic fields. J. Number Theory 187 (2018), 332343.CrossRefGoogle Scholar
Northcott, D. G.. Finite free resolutions. Cambridge Tracts in Math. no. 71 (Cambridge University Press, Cambridge-New York-Melbourne, 1976)Google Scholar
Popescu, C. D.. Stark’s question on special values of L-functions. Math. Res. Lett. 14 (2007), 531545.CrossRefGoogle Scholar
Rubin, K.. A Stark conjecture “over $\mathbb{Z}$ ” for abelian L-functions with multiple zeros. Ann. Inst. Fourier (Grenoble) 46 (1996), 3362.CrossRefGoogle Scholar
Sakamoto, R.. A higher rank Euler system for $\mathbb{G}_m$ over a totally real field. Amer. J. Math. 145 (2023), 65108.CrossRefGoogle Scholar
Sands, J. W.. Stark’s conjecture and abelian L-functions with higher order zeros at $s=0$ . Adv. Math. 66 (1987), 6287.CrossRefGoogle Scholar
Sands, J. W.. Popescu’s conjecture in multi-quadratic extensions. In Stark’s conjectures: recent work and new directions. Contemp. Math., vol. 358 (Amer. Math. Soc., Providence, RI, 2024) pp. 127141.CrossRefGoogle Scholar
Sands, J. W.. L-functions at the origin and annihilation of class groups in multiquadratic extensions. Acta Arith. 155 (2012), 173185.CrossRefGoogle Scholar
Sano, T.. Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns. Compositio. Math. 150 (2014), 18091835.CrossRefGoogle Scholar
Stark, H. M.. L-functions at $s=1$ . IV. First derivatives at $s=0$ . Adv. in Math. 35 (1980), 197235.CrossRefGoogle Scholar
Tangedal, B. A.. A question of Stark. Pacific J. Math. 180 (1997), 187199.CrossRefGoogle Scholar
Tate, J. T.. Les Conjectures de Stark sur les Fonctions L d’Artin en $s=0$ . Progr. in Math. vol 47 (Birkhäuser, Boston, 1984).Google Scholar