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Abstract

We derive new cases of conjectures of Rubin and of Burns–Kurihara–Sano concerning
derivatives of Dirichlet L-series at s = 0 in p-elementary abelian extensions of number fields
for arbitrary prime numbers p. In naturally arising examples of such extensions one therefore
obtains annihilators of class groups from S-truncated Dirichlet L-series for ‘large-enough’
sets of places S.

2020 Mathematics Subject Classification: 11R42 (Primary); 11R29 (Secondary)

1. Introduction
1·1. Dirichlet L-series at s = 0 and annihilation of class groups

Stark’s conjecture predicts a description for the leading term of a general Artin L-series
at s = 0 up to an unspecified rational factor. Formulating an integral refinement of this con-
jecture turned out to be a delicate task that Stark himself, in [54], only found a solution to in
the case that the order of vanishing of the L-series at s = 0 is one. Initial generalisations to
higher orders of vanishing, for example the ‘question’ of Stark in [29, 55] or a conjecture of
Sands [50, Conjecture 2·0], were subsequently shown to not hold in general by Rubin [48,
Section 4] and Popescu [47]. Instead, Rubin proposed in loc. cit. what is now commonly
referred to as the ‘Rubin–Stark conjecture’.

Going beyond mere integrality, it is expected that this unspecified factor encodes impor-
tant arithmetic information and, in particular, is linked to the Galois module structure of
class groups. The primordial example of this phenomenon is Stickelberger’s theorem from
the 19th century, which asserts that the ideal class group of a cyclotomic field is annihilated
by a certain element valued in the group ring over the relevant Galois group and constructed
from values of Dirichlet L-series at s = 0. The analogous annihilation statement for class
groups of finite abelian CM extensions of totally real fields is known as the ‘Brumer–Stark
conjecture’ and has very recently been settled by Dasgupta and Kakde [21] with additional
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arguments by Dasgupta, Kakde, Silliman and Wang [23]. In certain situations, these results
can even be extended to non-abelian CM extensions, see [16, 26, 33].

However, outside the setting of totally imaginary extensions of totally real fields the val-
ues of the associated Dirichlet L-series at s = 0 usually vanish (the only exception being the
case considered by Nomura in [45]) and so naive generalisations of Stickelberger’s theorem
become trivial. This led Burns to formulate the question whether in such cases one can
instead use higher derivatives of Dirichlet L-series to produce annihilators of class groups
(see [37, Question 1·1]) and similar aspects have also been considered by Buckingham
[7, 8].

In this article, we prove new results on the Rubin–Stark conjecture and, moreover, on the
annihilation of class groups, in cases of higher orders of vanishing. Indeed, in Theorem 1·1
we extend annihilation results concerning multi-quadratic extensions by Sands [52] and the
second author [37] to general p-elementary abelian extensions K/k of number fields, for
arbitrary prime numbers p. This result is conditional on the collection of subextensions
L/k of K/k that have degree p validating a conjecture of Burns, Kurihara and Sano (which
we recall as Conjecture 1·10). Since we are then also able, in Theorem 1·3, to prove new
cases of the Burns–Kurihara–Sano conjecture, we derive a method of systematically produc-
ing examples in which the annihilation claim of Theorem 1·1 is valid unconditionally (see
Corollary 1·8).

1·2. Statements of the main results

To describe our results in more detail, we fix a finite abelian extension of number fields
K/k with Galois group G := Gal(K/k) and, following Rubin [48, Hypothesis 2·1], a triple
(S, V , T) of finite sets of places of k with the following properties:

(H1) S contains both the set S∞ of infinite places of k and the places that ramify in K;

(H2) V � S is a proper subset comprising places which split completely in K/k;

(H3) T is disjoint from S and such that the group O×
K,S,T := {a ∈ K× | ordw(a) = 0 if

w �∈ SK , ordw(a − 1)> 0 if w ∈ TK} is Z-torsion free. (Here SK and TK denote the sets
of places of K that lie above those in S and T , respectively, and ordw is the normalised
valuation attached to w.)

We refer to such a triple (S, V , T) as a ‘Rubin datum’ for K/k. For any Rubin datum and
character χ in Ĝ := HomZ(G, C×), the (S-truncated, T-modified) Dirichlet L-series

Lk,S,T (χ , s) :=
∏
v∈T

(1 − χ(Frobv)Nv1−s) ·
∏
v�∈S

(1 − χ(Frobv)Nv−s)−1 if Re(s)> 1

is known to admit a meromorphic continuation to C that is holomorphic and of order of
vanishing at least |V| at s = 0 (cf. [56, Chapter I, Proposition 3·4]). We may therefore define
the (|V|-th order) ‘Stickelberger element’

θ
(|V|)
K/k,S,T (0) :=

∑
χ∈Ĝ

(
lim
s→0

s−|V|Lk,S,T (χ−1, s)
) · eχ ,

with eχ := |G|−1 ∑
σ∈G χ(σ )−1σ the usual primitive orthogonal idempotent in C[G]

associated with χ . In addition, we define XK,S ⊆ YK,S := ⊕
w∈SK

Zw to be the Z[G]-
submodule of elements whose coefficients sum to zero, and denote the Dirichlet regulator
isomorphism by

https://doi.org/10.1017/S0305004125000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000283


Annihilating class groups in p-elementary abelian extensions 147

λK,S : R⊗Z O×
K,S

	−→R⊗Z XK,S, x ⊗ a 
→ −x
∑

w∈SK

log |a|w · w. (1·1)

The Rubin–Stark conjecture [48, Conjecture B’] now predicts, via the reinterpre-
tation given in Lemma 2·2 below, that for every homomorphism of Z[G]-modules
f : O×

K,S,T → XK,S one has

θ
(|V|)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) ∈Z[G] (1·2)

with fR the scalar extension R⊗Z f : R⊗Z O×
K,S =R⊗Z O×

K,S,T −→R⊗Z XK,S of f . In
addition, it is expected that the element in (1·2) annihilates the SK-class group of K (cf.
[13, Conjecture 2·4·1] or [37, Question 1·1]). Here we study a refinement of this question
that instead considers the SK-ray class group ClK,S,T of K mod TK (defined as the quotient
of the group of fractional ideals of OK,S coprime to TK , by the subgroup of principal ideals
with a generator congruent to 1 modulo all w ∈ TK).

To state our first main result in this direction we fix a prime number p, consider a
p-elementary abelian extension K/k and write � for the set of degree-p subextensions L/k
of K/k.

THEOREM 1·1. Let K/k be a p-elementary abelian extension of number fields of degree pm

and fix a Rubin datum (S, V, T) for K/k that satisfies

|S| ≥ max{|V| + 2, |V| − sp + (p − 1)(m − 1) + 3},

where sp := dimFp (Clk,S,T ⊗Z Fp) denotes the p-rank of the S-ray class group mod T of k.
If for all subextensions L/k in � the Burns–Kurihara–Sano conjecture [17,

Conjecture 7·3] is valid for (L/k, S, V , T), then

{
θ

(|V|)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

} ⊆ AnnZ[G](ClK,S,T ).

In particular, the Rubin–Stark conjecture is valid for (K/k, S, V , T).

Remark 1·2. If p = 2, then each subextension in � is quadratic and Theorem 1·1 is
unconditional (see Remark 1·11 (d)) and recovers results of Sands [51, Theorem 2·2] on
the Rubin–Stark conjecture and of Sands [52, Main theorem] and the second author [37,
Theorem 1·4] on the annihilation of class groups.

To prove Theorem 1·1 (in Section 4) we first deduce in Lemma 4·2 the validity
of the Rubin–Stark conjecture for K/k from the assumed validity of conjecture [17,
Conjecture 7·3] for all subextensions in �. The annihilation statement in Theorem 1·1 is
then deduced from this by varying the Rubin datum in combination with Cebotarev’s den-
sity theorem, as in the theory of ‘Stark systems’ (see, for example, [18, Section 4]). Although
this latter aspect of the argument is of a general nature, we prefer to focus on the concrete
situation of Theorem 1·1 in this article and to discuss the general formalism elsewhere.

As our second main result, we prove new cases of the Burns–Kurihara–Sano conjecture.
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THEOREM 1·3. Let K/k be an extension of number fields of one of the following forms:

(i) There exists a prime-power q and a subfield κ of k such that K/κ is a Galois extension
with Galois group isomorphic to the group Aff(q) of affine transformations of the field
Fq with q elements, and G = Gal(K/k) is the unique subgroup of order q of Gal(K/κ).

(ii) K/k is a biquadratic extension.

Then, given any Rubin datum (S, V, T) for K/k that satisfies |S|> |V| + 1, the Burns–
Kurihara–Sano conjecture is valid for (K/k, S, V , T). In particular, the Rubin–Stark
conjecture is also valid for (K/k, S, V , T).

Remark 1·4. The condition |S|> |V| + 1 often already follows from (H1) and (H2). For
example, if k has odd class number, then class field theory implies that there can only be
finitely many biquadratic extensions K of k that admit a Rubin datum (S, V, T) with |S| =
|V| + 1.

Example 1·5. Fix a prime number p and let ζp be a primitive pth root of unity in an
algebraic closure of Q. Let κ be a number field with the property that κ ∩Q(ζp) =Q. If
we pick any element a ∈ κ× that is not a pth power in κ , then it is also not a pth power in
k := κ(ζp) and K := k( p

√
a) is an extension of the form (i) with q = p.

Remark 1·6. The Burns–Kurihara–Sano conjecture (for arbitrary Rubin datum) is known
to be a consequence of the ‘equivariant Tamagawa Number Conjecture’ (eTNC) for K/k
by [17, Theorem 7·5]. (Note that the eTNC is referred to as the ‘Leading Term Conjecture’
LTC(K/k) in the cited result, cf. [17, Proposition 3·4 and Remark 3·2]) For the extensions
K/k considered in Theorem 1·3 and any prime 	 not dividing [K:k], the ‘	-component’ of
eTNC(K/k) can easily be seen to follow from the analytic class number formula (via Tate’s
proof [56, Chapter II, Theorem 6·8] of the ‘strong Stark conjecture’ in this setting) and
Johnston and Nickel have proved in [32, Theorem 4·6] that in certain instances of case (i)
one can even deduce the 	-component of eTNC(K/κ). Of most interest, therefore, is the
component of eTNC(K/k) at the unique prime dividing [K:k].

However, a proof of this component seems to be out of reach at present since even in the
case (ii) of biquadratic extensions it amounts to a difficult, yet explicit, question regarding
signs (see Remark 3·2 for more details). The perhaps surprising insight behind the proof
of Theorem 1·3 is that the information provided by the analytic class number formula is
nevertheless sufficient to allow for the deduction of the Burns–Kurihara–Sano conjecture,
subject only to the restriction that |S|> |V| + 1. In fact, the direct argument given in Section
3·1 is uniform and does not require a distinction between 	 � [K:k] and 	 | [K:k].

Remark 1·7. Johnston and Nickel [32, Theorem 7·6] have also proved a conjecture of
Burns (from [13]) regarding the annihilation of class groups in extensions K/κ as in case (i)
for which k/Q is abelian.

Results on the Rubin–Stark conjecture in the literature outside the classical cases where
at most one archimedean place of k splits in K or the degree [K:k] is at most two are sparse
(see Remark 1·11 for a list of known cases). By combining Theorems 1·3 and 1·1 with
Example 1·5, we now obtain the following method to systematically produce new examples
in which the conjecture is valid.
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COROLLARY 1·8. Let p be a prime number, let ζp be a primitive p-th root of unity, and
let κ be a number field with the property that κ ∩Q(μp) =Q. Let a1, . . . , am be elements
of κ that are Fp-linearly independent in κ×/(κ×)p, and set k := κ(μp) and
K := k( p

√
a1, . . . , p

√
am).

If (S, V, T) is a Rubin datum for K/k with

|S| ≥ max{|V| + 2, |V| − sp + (p − 1)(m − 1) + 3},

then

{
θ

(|V|)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

} ⊆ AnnZ[G](ClK,S,T ).

In particular, the Rubin–Stark conjecture is valid for (K/k, S, V , T).

Proof. The kernel of the natural map κ×/(κ×)p → k×/(k×)p identifies with
H1(Gal(k/κ),μp), and hence vanishes. It follows that a1, . . . , am generate an Fp-
subvectorspace of k×/(k×)p of dimension m. By Kummer theory, one therefore has that
[K:k] = pm and so, noting that Gal(k( p

√
ai)/κ) ∼= Aff(p) for every i ∈ {1, . . . , m} because

κ ∩Q(μp) =Q, the result follows by combining Theorems 1·3 and 1·1.

1·3. The conjectures of Rubin–Stark and Burns–Kurihara–Sano

In this section we state the Rubin–Stark conjecture and the conjecture [17, Conjecture 7·3]
of Burns, Kurihara and Sano, and we discuss the list of cases in which either conjecture is
known to be valid. The formulations given here, in terms of the products of the form (1·2),
are equivalent to the original versions of the conjectures by Lemma 2·2 below.

We fix a finite abelian extension of number fields K/k with Galois group G := Gal(K/k)
and Rubin datum (S,V ,T).

CONJECTURE 1·9 (Rubin–Stark, [48, Conjecture B’]). One has

{
θ

(|V|)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

} ⊆ Z[G].

We set K×
T := {a ∈ K× | ordw(a − 1)> 0 if w ∈ TK}. Then the ‘integral dual Selmer group’

SelK,S,T is defined by Burns–Kurihara–Sano [17, Definition 2·1] as the cokernel of the map

∏
w�∈SK∪TK

Z→ HomZ(K×
T , Z), (xw)w 
→ {

a 
→
∑

w

xwordw(a)
}
.

It fits into a canonical exact sequence of G-modules

0 −→ HomZ(ClK,S,T , Q/Z) −→ SelK,S,T −→ HomZ(O×
K,S,T , Z) −→ 0,

with all duals endowed with the contragredient G-action.
In the sequel, for n ≥ 0, we write FittnZ[G](M) for the n-th Fitting ideal in Z[G] of a finitely

presented Z[G]-module M (see, for example, [46, Section 3·1] or [43]). Given a subset I of
C[G], we denote by I# the image of I under the involution of C[G] that inverts elements of G.
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Burns–Kurihara–Sano use the Selmer group to refine Conjecture 1·9 as follows.

CONJECTURE 1·10 (Burns–Kurihara–Sano [17, Conjecture 7·3]). One has{
θ

(|V|)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

} = Fitt|V|
Z[G](SelK,S,T )#. (1·3)

Remark 1·11. To the best of the authors’ knowledge, the following is a complete list of
cases in which the Rubin–Stark conjecture is known at present.

(a) One can directly verify the conjecture for the following general classes of extensions
K/k:

(i) if [K : k] ≤ 2, then it follows from the analytic class number formula (see [48,
Corollary 3·2 and Theorem 3·5]);

(ii) if k =Q and V = S∞ is the singleton comprising the unique infinite place of Q, then
it follows by means of a direct computation that shows that the relevant Rubin–
Stark element (as defined in section 2·1) can be expressed in terms of a cyclotomic
unit (cf. [56, Chapter III, Section 5]);

(iii) if k is an imaginary quadratic field and V = S∞ is the singleton comprising the
unique infinite place of k, then it follows from Kronecker’s Second Limit Formula
for elliptic units (cf. [56, Chapter IV, Proposition 3·9]);

(iv) if V =∅, then it is a consequence of work of Cassou-Noguès [19] and, indepen-
dently, Deligne and Ribet [24] (cf. [30, Proposition 3·7]).

(b) In addition, the conjecture has been directly verified in the following particular cases.

(i) Grant [29] has verified it for k =Q(ζ5) and K = k( 5
√
ε) with ζ a primitive 5th root

of unity and ε := − ζ 2 − ζ 3.
(ii) If K/k is multi-quadratic, then Dummit, Sands and Tangedal [25], Sands [51], and

the second author [37] have verified it in special cases.
(iii) McGown, Sands and Vallières [38] have numerically verified it for V = S∞ in the

19197 examples of k a real quadratic field and K a totally real cubic extensions of
k of discriminant less than 1012 and V = S∞

(c) It holds if S \ V contains a place that splits completely in K (cf. [48, Proposition 3·1]).

(d) The examples listed in (a) are by now sufficiently well understood to allow for a proof
of eTNC(K/k) [17, Conjecture 3·6]. By [17, Theorem 7·5], for any given Rubin datum
for K/k, the conjecture [17, Conjecture 7·3], and hence also the Rubin–Stark conjec-
ture, is a consequence of eTNC(K/k). Using functoriality properties of the eTNC,
one thus obtains the validity of both the Burns–Kurihara–Sano and Rubin–Stark con-
jectures for any K/k (and Rubin datum) such that F ⊆ k ⊆ K ⊆ H, with H/F a finite
Galois extension for which eTNC(H/F) holds. The same conclusion is true if the
‘minus part’ eTNC−(H/F) of eTNC(H/F) holds and k is totally real and K is totally
imaginary.
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In this direction, the following is currently known:

(i) eTNC(H/F) holds if [H:F] = 2; this case is proved by Kim [36, Section 2·4];

(ii) eTNC(H/F) holds if F =Q; this is work of Burns and Greither [15] with
additional arguments for the 2-component by Flach [28];

(iii) eTNC(H/F) holds if F an imaginary quadratic field such that all prime divisors
of [H:F] split in k or validate Iwasawa’s μ-vanishing conjecture; this case is
proved by Hofer and the first author [11, Theorem B] and extends previous
work of Bley [2, 3, 4].

(iv) eTNC(H/F)− holds if F is a totally real field and H is CM; this is work
of the first author, Burns, Daoud and Seo [10] with additional arguments for
the 2-component by Dasgupta, Kakde and Silliman [22]. Earlier work in this
direction includes [1, 41, 42, 44]. (The results in [10] crucially rely on work
of Dasgupta and Kakde [21] on the Strong Brumer–Stark conjecture, and we
remark that the Rubin–Stark conjecture can alternatively be directly deduced
from the Strong Brumer–Stark conjecture, see [21, Theorem 1·6]).

Further examples of, not necessarily abelian, extensions H/F for which
eTNC(H/F) is known at present include the following:

(i) H is a totally real Galois extension of F =Q such that either Gal(K/Q) ∼=
S3 and H has discriminant less than 1020 or Gal(H/Q) ∼= D12 and H
has discriminant less than 1030; by Hofmann, Johnston, and Nickel [34,
Corollary A·3].

(ii) a particular family of Quaternionic extensions H of F =Q; by Burns and Flach
[14, Theorem 4·1].

(iii) one example of a Galois extension H of F =Q with Gal(H/Q) ∼= A4; numerical
verification by Navilarekallu [40].

(iv) when a number of standard conjectures are known to be valid, further results
can be deduced from the examples above, see [32, Section 4] and [34,
Section 10].

2. Preliminaries

In this preliminary section we review various constructions that will be useful in the
sequel.

2·1. Rubin–Stark elements

Let K/k be a finite abelian extension of number fields with Galois group G := Gal(K/k)
and let (S, V , T) be a Rubin datum for K/k. We fix a labelling S = {v0, . . . , v|S|−1} such
that V = {v1, . . . , v|V|} along with an extension wi to K of each place vi in S. The ‘Rubin–

Stark element’ εV
K/k,S,T for (S, V , T) is then the unique element of R⊗Z

∧|V|
Z[G] O×

K,S with
the property that

( ∧|V|
λK,S

)
(εV

K/k,S,T ) = θ
(|V|)
K/k,S,T (0) ·

∧
1≤i≤|V| (wi − w0)

with
∧|V|

λK,S : R⊗Z

∧|V|
Z[G] O×

K,S
	−→R⊗Z

∧|V|
Z[G] XK,S the isomorphism induced by

(1·1).
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Definition 2·1 . We define a Z[G]-submodule of R[G] by setting

im(εV
K/k,S,T ) := {

F(εV
K/k,S,T ) | F ∈

∧|V|
Z[G]

HomZ[G](O×
K,S,T , Z[G])

}
,

where F(εV
K/k,S,T ) denotes the image of (εV

K/k,S,T , F) under the determinant pairing

(
R⊗Z

∧|V|
Z[G]

O×
K,S

) × (
R⊗Z

∧|V|
Z[G]

HomZ[G](O×
K,S,T , Z[G])

) →R[G],

(a1 ∧ · · · ∧ a|V|, f1 ∧ · · · ∧ f|V|) 
→ det (fi(aj))1≤i,j≤|V|.

The following result was used in section 1·3 to reformulate both the Rubin–Stark conjec-
ture and the Burns–Kurihara–Sano conjecture in terms of the more explicit products of the
form (1·2).

LEMMA 2·2. For any Rubin datum (S, V, T) for K/k, one has an equality

im(εV
K/k,S,T ) = {θ |V|

K/k,S,T (0) · detR[G](fR ◦ λ−1
K,S) | f ∈ HomZ[G](O×

K,S,T , XK,S)}.
Proof. This is an immediate consequence of [37, Lemma 2·2].

2·2. Weil-étale cohomology complexes

We briefly recall key properties of a useful family of complexes constructed by Burns,
Kurihara, and Sano in [17]. To do so, we let K/F be an arbitrary finite Galois extension of
number fields with Galois group �F := Gal(K/F).

We write D(Z[�F]) for the derived category of Z[�F]-modules and Dp(Z[�F]) for its
full triangulated subcategory comprising complexes that are ‘perfect’, that is, isomorphic
(in D(Z[�F])) to a bounded complex of finitely generated projective Z[�F]-modules.

LEMMA 2·3. Fix sets S and T of places of F that satisfy the conditions (H1) and (H3) in
section 1 with k replaced by F. Then the ‘Weil-ètale cohomology complex’

C•
K,S,T := RHomZ(Rc,T ((OK,S)W , Z), Z)[ − 2]

constructed in [17, Proposition 2·4] is an object of Dp(Z[�F]) that has the following
properties:

(i) C•
K,S,T is acyclic outside degrees zero and one, with H0(C•

K,S,T ) =O×
K,S,T , and the

‘transpose Selmer group’ SeltrK,S,T := H1(C•
K,S,T ) lies in a short exact sequence of�F-

modules

0 −→ ClK,S,T −→ SeltrK,S,T −→ XK,S −→ 0;

(ii) C•
K,S,T is isomorphic in D(Z[�F]) to a complex [P0

φ→ P1] in which P0 is finitely
generated projective (and placed in degree 0) while P1 is free of finite rank;

(iii) for any normal subgroup  of�F there is, in Dp(Z[�F/]), a canonical isomorphism

Z[�F/] ⊗L
Z[�F] C•

K,S,T
∼= C•

K ,S,T .
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Proof. C•
K,S,T is an object of Dp(Z[�F]) by choice of S and by [17, Proposition 2·4 (iv)].

Claim (i) is [17 Remark 2·7], Claim (ii) is proved in [17, Section 5·4]. Claim (iii) follows
from the diagram in [17, Proposition 2·4 (i)], and the functoriality properties of étale
cohomology.

3. The proof of Theorem 1·3
3·1. The proof in case (i)

In this subsection we assume the hypotheses of Theorem 1·3 (i). In particular,
� := Gal(K/κ) is isomorphic to Aff(q), and (S, V , T) is a Rubin datum for K/k with
|S|> |V| + 1. We recall that Aff(q) is isomorphic to the semidirect product Fq �F×

q with
the natural action (see for instance [32, Example 2·16]).

Since G = Gal(K/k) is abelian, the complex C•
K,S,T in Dp(Z[G]) admits a well-defined

determinant DetZ[G](C•
K,S,T ) (in the sense of Knudsen–Mumford). We then also use the

‘zeta element’ zK/k,S,T ∈R⊗Z DetZ[G](C•
K,S,T ), the definition of which can be found in [17,

Definition 3·5] and will be recalled in the course of the proof of Lemma 3·1 below. For the
moment we only note that zK/k,S,T is by construction an R[G]-basis of the free rank-one
R[G]-module R⊗Z DetZ[G](C•

K,S,T ).

LEMMA 3·1. The following claims are valid.

(a) The zeta element zK/k,S,T belongs to Q⊗Z DetZ[G](C•
K,S,T ). In particular, zK/k,S,T is a

Q[G]-basis of the free rank-one Q[G]-module Q⊗Z DetZ[G](C•
K,S,T ).

(b) For every prime number 	, there exists an element z(	)
K/k,S,T of DetZ[G](C•

K,S,T ) with the
following properties:

(i) the Z[G]-submodule of DetZ[G](C•
K,S,T ) generated by z(	)

K/k,S,T has prime-to-	 index;

(ii) the unique element λ(	) ∈Q[G] defined by zK/k,S,T = λ(	) · z(	)
K/k,S,T belongs to the

image of the map

ρ�/G : ζ (C[�]) →C[G], x 
→
∑
χ∈Ĝ

( ∏
ψ∈�̂

ψ(x)〈ψ ,Ind�G (χ)〉) · eχ ,

where �̂ is the set of irreducible characters of�, 〈·, ·〉 denotes the inner product of
characters, ζ (C[�]) ∼= ∏

ψ∈�̂ C denotes the centre of C[�], and we have written
ψ for the map ζ (C[�]) →C induced by ψ .

Proof. Claim (a) is equivalent to Stark’s conjecture for K/k (cf. [27, Theorem 7·1 b)]).
Since any non-trivial (irreducible) character of G induces a rational-valued character of �
(see, for example, [39, Theorem 5]), the validity of Stark’s conjecture follows from Tate’s
proof of Stark’s conjecture for rational-valued characters in [56, Chapter II, Theorem 6·8].

To prove claim (b), we may enlarge S and T since, if S’ and T’ are respective disjoint
finite oversets of S and T , then the exact triangles in [17, Proposition 2·4, (ii) and right-hand
column of (6) in (i)] induce an isomorphism

DetZ[G](C
•
K,S′,T ′)

	−→ DetZ[G](C
•
K,S,T )
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that maps zK/k,S′,T ′ to zK/k,S,T . We therefore may and will assume that S contains all places
that are ramified in K/κ and that both S and T are stable under the action of �.

Since the complex C•
K,S,T depends only on K, SK and TK , we may then regard it

also as an object of Dp(Z[�]). We fix a representative of C•
K,S,T in D(Z[�]) as in

Lemma 2·3 (ii) (applied to F = κ). We note that (1·1) combines with the Noether–Deuring
Theorem to imply that Q⊗Z P0 ∼=Q⊗Z P1. For every prime number 	, Roiter’s Lemma [20,
(31·6)] then gives the existence of an injection i(	) : P1 ↪→ P0 with finite cokernel of order
prime to 	.

We fix a set {σ1, . . . , σ(�:G)} of representatives for�/G and choose an ordered Z[�]-basis
B= {b1, . . . , bd} of P1. Then P1 is also a free Z[G]-module, with (ordered) Z[G]-basis

B′ := {σ1b1, . . . σ(�:G)b1, . . . , σ1bd, . . . σ(�:G)bd}.
We also define ordered sets C(	) := {i(	)(b) | b ∈B} and C′(	) = {i(	)(b) | b ∈B′}. Setting

P∗
1 := HomZ[G](P1, Z[G]), we now define

z
(	)
K/k,S,T := ( ∧

c∈C′(	)
c
) ⊗ ( ∧

b∈B′
b∗) ∈ ( ∧(�:G)d

Z[G]
P0

) ⊗Z[G]
( ∧(�:G)d

Z[G]
P∗

1

)

= DetZ[G](C
•
K,S,T ),

where b∗ : P1 →Z[G] denotes the Z[G]-linear dual of b ∈ P1. By construction, the element
z

(	)
K/k,S,T then has property (i).

To justify claim (ii), we first recall the definition of the zeta element zK/k,S,T .
Our fixed choice of representative for C•

K,S,T gives rise to exact sequences

0 →O×
K,S,T → P0 → φ(P0) → 0 and φ(P0) → P1 → SeltrK,S,T → 0 of Z[�]-modules for

which we may choose R[�]-splittings

ι1 : R⊗Z P0 ∼= (R⊗Z O×
K,S,T ) ⊕ (R⊗Z φ(P0)),

ι2 : R⊗Z P1 ∼= (R⊗Z XK,S) ⊕ (R⊗Z φ(P0)).

Given this, we define the composite isomorphism of R[�]-modules

α := (ι−1
2 ◦ (λK,S ⊕ id) ◦ ι1) : P0 → P1,

where λK,S denotes the Dirichlet regulator map defined in (1·1). We write A(	) for the matrix
in GL(�:G)d(R[G]) that represents α with respect to the bases C′(	) and B′.

We consider the ‘leading term’

θ∗
K/κ ,S,T (0) :=

∑
ψ∈�̂

L∗
κ ,S,T (ψ̌ , 0)eψ ∈ ζ (R[�])×,

where ψ̌ denotes the contragredient of ψ and L∗
κ ,S,T (ψ̌ , 0) is the leading term of Lκ ,S,T (ψ̌ , s)

at s = 0. Similarly, we set θ∗
K/k,S,T (0) := ∑

χ∈Ĝ L∗
k,S,T (χ̌ , 0)eχ ∈R[G]×. One then has that

zK/k,S,T = λ(	) · z(	)
K/k,S,T with λ(	) ∈R[G]× the unique element such that λ(	) · detR[G](A(	)) =

θ∗
K/k,S,T (0). The reduced norm of the matrix B(	) ∈ GLd(R[�]) that represents α with respect

to the bases C(	) and B belongs to ζ (R[�])×, and we define a scalar μ(	) ∈ ζ (R[�])× by

μ(	) · NrdR[�](B
(	)) = θ∗

K/κ ,S,T (0).
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By the functoriality of reduced norms under restriction to subgroups (see, for example, [5,
bottom of p. 291]) one has ρ�/G(NrdR[�](B(	))) = detR[G](A(	)) and thus also

ρ�/G(μ(	)) · detR[G](A
(	)) = ρ�/G(θ∗

K/κ ,S,T (0)) = θ∗
K/k,S,T (0),

from which we deduce that ρ�/G(μ(	)) = λ(	). This concludes the proof of claim (b).

We now give the proof of Theorem 1·3 in case (i). Since �∼= Aff(q), one has that �̂
consists of the linear characters of �/G and the unique irreducible character of degree
q − 1 that is obtained as ψnl := Ind�G (χ) for any non-trivial (irreducible) character χ of G
(see, for example, [39, Theorem 5]). As a consequence, one has

〈ψ , Ind�G (χ)〉 =

⎧⎪⎨
⎪⎩

1 if χ �= 1G,ψ =ψnl,

1 if χ = 1G,ψ = 1�,

0 otherwise.

For every prime number 	, the element λ(	) provided by Lemma 3·1 (b) (ii) is hence of
the form λ(	) = ae1 + b(1 − e1) for suitable a, b ∈Q.

Now, the isomorphism Z⊗L
Z[G] C•

K,S,T
∼= C•

k,S,T in Lemma 2·3 (iii) induces an iso-
morphism Z⊗Z[G] (Q⊗Z DetZ[G](C•

K,S,T )) ∼=Q⊗Z DetZ(C•
k,S,T ) that sends 1 ⊗ zK/k,S,T to

zk/k,S,T . In addition, the analytic class number formula for k asserts that zk/k,S,T is a Z-basis
of the free rank-one Z-module DetZ(C•

k,S,T ) (cf. [35, Section 2·2·2] or [12, Exercise 2·6]).
For each prime number 	, we write Z(	) for the localisation of Z at the prime ideal

	Z. The definition of z
(	)
K/k,S,T then implies that both 1 ⊗ z

(	)
K/k,S,T and a · (1 ⊗ z

(	)
K/k,S,T ) =

1 ⊗ (λ(	)z
(	)
K/k,S,T ) = 1 ⊗ zK/k,S,T are Z(	)-bases of Z⊗Z[G] (Z(	) ⊗Z DetZ[G](C•

K,S,T )). We

conclude that a belongs to Z×
(	).

We next write N = NQ[G]/Q : Q[G] →Q for the ring-theoretic norm map and note that
the construction of [10, Lemma 3·7 (c)] gives the existence of an N-semilinear map
F : Q⊗Z DetZ[G](C•

K,S,T ) →Q⊗Z DetZ(C•
K,S,T ) that sends zK/k,S,T to zK/K,S,T . Since

zK/K,S,T is a Z-basis of DetZ(C•
K,S,T ) by the analytic class number formula for K, we

see that for each prime 	, both F (z(	)
K/k,S,T ) and zK/k,S,T =F (zK/k,S,T ) =F (λ(	)z

(	)
K/k,S,T ) =

N(λ(	)) ·F (z(	)
K/k,S,T ) are Z(	)-bases of Z(	) ⊗Z DetZ(C•

K,S,T ). It follows that N(λ(	)) = abq−1

must also belong to Z×
(	). Upon recalling that a ∈Z×

(	) by the above discussion, we conclude

that bq−1 ∈Z×
(	). Since b is rational, we deduce that b belongs to Z×

(	).
Define an idempotent eK,S,V of Q[G] as the sum

∑
χ eχ of all primitive orthogonal

idempotents eχ associated with characters χ of G such that eχ annihilates C⊗Z XK,S\V .
We then define a ‘projection map’ �V

K/k,S as the composite map

Q⊗Z DetZ[G](C
•
K,S) −−−→ DetQ[G](Q⊗Z O×

K,S) ⊗Q[G] DetQ[G](Q⊗Z XK,S)−1

·eK,S,V−−−→ eK,S,V · ((Q⊗Z

∧|V|
Z[G]

O×
K,S,T ) ⊗Q[G] (Q⊗Z

∧|V|
Z[G]

YK,V )−1)
	−−−−→ eK,S,V · (Q⊗Z

∧|V|
Z[G]

O×
K,S,T ), (3·4)

where the first arrow is the natural ‘passage-to-cohomology’ map, the second map is induced
by multiplication by eK,S,V , and the last arrow by the trivialisation

∧|V|
Z[G] YK,V ∼=Z[G] that

is afforded by sending
∧

1≤i≤|V| wi to 1.
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Note that our hypothesis |S|> |V| + 1 combines with the short exact sequence
0 → XK,S\V → XK,S → YK,V → 0 to imply that e1 · eK,S,V = 0. In particular, we have
λ(	) · eK,S,V = (ae1 + b(1 − e1)) · eK,S,V = beK,S,V . Since it is proved in [17, Theorem 5·14]
that one has �V

K/k,S(zK/k,S,T ) = εV
K/k,S,T , we therefore deduce that

εV
K/k,S,T =�V

K/k,S,T (zK/k,S,T ) = λ(	) ·�V
K/k,S,T (z(	)

K/k,S,T ) = b ·�V
K/k,S,T (z(	)

K/k,S,T )

for each prime 	. Now, the equality

Z(	) ⊗Z im(�V
K/k,S,T (z(	)

K/k,S,T )) =Z(	) ⊗Z Fitt|V|
Z[G](SelK,S,T )#

that is established via the argument of [17, Theorem 7·5] combines with the last displayed
equation and the fact that b is invertible to imply that

Z(	) ⊗Z im(εV
K/k,S,T ) =Z(	) ⊗Z

(
b · im(�V

K/k,S,T (z(	)
K/k,S,T ))

) =Z(	) ⊗Z Fitt|V|
Z[G](SelK,S,T )#.

The claim in Theorem 1·3 (i) now follows upon recalling that 	 is an arbitrary prime number.

3·2. The proof in case (ii)

To prove Theorem 1·3 in case (ii), we let K/k be a biquadratic extension of number fields
and note that, by the known validity of Stark’s conjecture for K/k, the zeta element zK/k,S,T

is a Q[G]-basis of the free rank-one Q[G]-module Q⊗Z DetZ[G](C•
K,S,T ) (cf. the argument

of Lemma 3·1 (a)). We then let 	 be an arbitrary prime number and choose, using Roiter’s
Lemma, an element z(	)

K/k,S,T that generates a Z[G]-submodule of DetZ[G](C•
K,S,T ) of finite,

prime-to-	 index. Label the proper intermediate fields of K/k as K1 := k, K2, K3, and K4,
and, using Lemma 2·3 (iii), denote the image of z(	)

K/k,S,T under the natural map

DetZ[G](C
•
K,S,T ) →Z[Gal(Ki/k)] ⊗Z[G] DetZ[G](C

•
K,S,T ) ∼= DetZ[Gal(Ki/k)](C

•
Ki,S,T )

as z
(	)
Ki/k,S,T for every i ∈ {1, . . . , 4}. Write χi for the trivial character if i = 1 and the non-

trivial character of Gal(Ki/k) otherwise. The discussion above (in case (i)) then shows that
we have

eχi · z(	)
Ki/k,S,T = ai · eχi · zKi/k,S,T

for some ai in Z×
(	). It follows that

z
(	)
K/k,S,T = (

4∑
i=1

aieχi) · zK/k,S,T .

If 	 �= 2, then it is clear that λ(	) := ∑4
i=1 aieχi belongs to Z(	)[G]×. For 	= 2, the scalar λ(2)

belongs to Z(2)[G]× if and only if it belongs to Z(2)[G] because NQ[G]/Q(λ(2)) = ∏4
i=1 ai is

a unit in Z(2). Now, λ(2) is in Z(2)[G] if and only if, for every σ ∈ G we have that

4∑
i=1

aiχi(σ ) ≡ 0 mod 4.

Note that χi(σ ) = ±1 and ai ≡ ±1 mod 4 for all i ∈ {1, . . . , 4}. One can then check
explicitly that the above congruence holds if and only if

∏4
i=1 ai ≡ 1 mod 4 (cf. also [9,

Lemma 6·3 (v)]). In particular, if we let b ∈ {±1} be defined by b ≡ ∏4
i=1 ai mod 4, then

λ′ := ba1e1 + ∑3
i=1 aieχi belongs to Z(2)[G]×.
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As in case (i), we define eK,S,V as the sum of all eχ that annihilate C⊗Z XK,S\V . The
assumption |S|> |V| + 1 then ensures that e1 · eK,S,V = 0 and thus that λ(2)eK,S,V = λ′eK,S,V .
Using the map �V

K/k,S defined in (3·4), we obtain the equality

Z(2) ⊗Z im(εV
K/k,S,T ) =Z(2) ⊗Z λ

′ · im(�V
K/k,S,T (z(2)

K/k,S,T )) =Z(2) ⊗Z Fitt|V|
Z[G](SelK,S,T )#,

where the final equality follows from the argument of [17, Theorem 7·5] as in case (i).
Since the corresponding identity also holds for each odd 	, this completes the proof of
Theorem 1·3.

Remark 3·2. The only instances of (i) and (ii) in Theorem 1·3 that can neither be treated
by the argument used to prove Theorem 1·3 nor Remark 1·11 (i) are the cases in which
|S| = |V| + 1 and the unique place v ∈ S \ V has full decomposition group in K/k. In any
such situation and for large enough V , the equality (1·3) is in fact equivalent to eTNC(K/k)
and amounts to a subtle question about signs. To make this more explicit in case (ii) of
Theorem 1·3, we suppose that K/k is biquadratic, |S| = |V| + 1, and V is large enough
that ClK,S,T vanishes. Then O×

K,S,T is a free Z[G]-module of rank |V| and we can choose

an ordered Z[G]-basis B of O×
K,S,T . Fix an ordering G = {g1, g2, g3, g4} and consider the

ordered Z-basis B′ := {gb | g ∈ G, b ∈B} of O×
K,S,T , ordered lexicographically. Similarly,

we set W := {gwi | g ∈ G, 1 ≤ i ≤ |V|}, ordered lexicographically. Then one can show that
(1·3) is equivalent to

detR( log |b|w)b∈B′,w∈W < 0.

(Cf. [9, Proposition 10·5].) This question does not depend on the ordering on G and, since
G is Z/2Z⊕Z/2Z, also not on the choice of basis B (or the ordering on it) because every
unit in Z[G] is of the form ±g for some g ∈ G, and so has norm 1.

In the setting of case (i) of Theorem 1·3 one can similarly derive an explicit criterion by
using [6, Lemma 3·5].

4. The proof of Theorem 1·1
We now fix a p-elementary extension K/k with Galois group G ∼= (Z/pZ)m. Write �∗ for

the set of subgroups H of G of index at most p. The following algebraic observation plays a
key role in the sequel.

LEMMA 4·1. Set NH = ∑
τ∈H τ for every H ∈�∗. In Z[G] we then have the equality

∑
H∈�∗

NH +
(

(pm−1 − 1) −
( m−1∑

i=0

pi
))

· NG = pm−1.

Proof. Observe that G is an Fp-vector space and the (non-trivial) H are exactly the
(m − 1)-dimensional subspaces of G. Recall that the trace pairing

Fm
p × Fm

p → Fp, (v, w) 
→
m∑

i=1

viwi

is perfect, hence induces a bijection between (m − 1)-dimensional and 1-dimensional sub-
spaces. The number of 1-dimensional subspaces is exactly pm − 1/p − 1, hence |�∗ \ {G}|
is equal to pm − 1/p − 1. If we fix v ∈ Fp \ {0}, then the set of all (m − 1)-dimensional
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subspaces of Fm
p that contain v is in bijection with all 1-dimensional subspaces of the

space {w ∈ Fm
p | ∑m

i=1 viwi = 0}, the kernel of the (1 × m)-matrix v. This space is there-

fore of dimension m − 1 and contains pm−1 − 1/p − 1 subspaces of dimension one. That is,
there are exactly pm−1 − 1/p − 1 subgroups H ∈�∗ \ {H} that contain a given (non-trivial)
element of G. It follows that there are exactly

pm − 1

p − 1
− pm−1 − 1

p − 1
= (pm − 1) − (pm−1 − 1)

p − 1
= pm−1(p − 1)

(p − 1)
= pm−1

such H that do not contain a given (non-trivial) element. Thus, each element of G appears

in the sum (
∑

H∈�∗\{G} NH

)
+ pm−1(NG − 1) exactly |�∗ \ {G}| many times. From this we

obtain

( ∑
H∈�∗\{G}

NH

)
+ pm−1(NG − 1) = |�∗ \ {G}| · NG = (pm − 1)

p − 1
· NG =

( m−1∑
i=0

pi
)

· NG.

For any integer r ≥ 0 and H ∈�∗, we consider the injection

νH : C⊗Z

∧r

Z[G/H]
O×

KH ,S,T →C⊗Z

∧r

Z[G]
O×

K,S,T , a 
→ |H|max{0,1−r} · a

that satisfies

νH(Nr
Ha) = NHa for any a ∈C⊗Z

∧r

Z[G]
O×

K,S,T . (4·5)

As a straightforward application of Lemma 4·1 we obtain the following consequence that
recovers [51, Proposition 4·5] in the case p = 2.

PROPOSITION 4·2. In R⊗Z

∧r
Z[G] O×

K,S,T we have the equality

εV
K/k,S,T = 1

pm−1
·
( ∑

H∈�∗
νH

(
εV

KH/k,S,T

) +
(

(pm−1 − 1) −
( m−1∑

i=0

pi
))

· νG
(
εV

k/k,S,T

))
.

Proof. Using Lemma 4·1 (a), equation (4·5), and the norm relations for Rubin–Stark
elements [48, Proposition 6·1] we calculate

pm−1 · εV
K/k,S,T =

( ∑
H∈�∗

NH +
(

(pm−1 − 1) −
( m−1∑

i=0

pi
))

· NG

)
· εV

K/k,S,T

=
( ∑

H∈�∗
νH

(
N|V|

H εV
K/k,S,T

)) +
(

(pm−1 − 1) −
( m−1∑

i=0

pi
))

· νG
(
N|V|

G εV
K/k,S,T

)

=
( ∑

H∈�∗
νH

(
εV

KH/k,S,T

)) +
(

(pm−1 − 1) −
( m−1∑

i=0

pi
))

· νG
(
εV

k/k,S,T

)
,

as required to prove the claim.

To prepare for the proof of Theorem 1·1, we now first give a preliminary result in which
we write IG := ker{Z[G] →Z} for the absolute augmentation ideal of Z[G] and, given a
Z[G]-module M and non-negative integer r, define its r-th exterior bidual’ to be
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Z[G]
M := {

a ∈Q⊗Z

∧r

Z[G]
M | F(a) ∈Z[G] for all F ∈

∧r

Z[G]
HomZ[G](M, Z[G])

}
.

LEMMA 4·3. Fix a Rubin datum (S, V, T) for K/k and a non-negative integer c that satisfies

|S| ≥ max{|V| + 2, |V| − sp + (p − 1)(m − 1) + 2 + c},
where sp := dimFp (Clk,S,T ⊗Z Fp) denotes the p-rank of Clk,S,T . If the equality (1·3) of

Conjecture 1·10 holds for all extensions L/k in�, then εV
K/k,S,T belongs to Ic

G · ⋂|V|
Z[G] O×

K,S,T
(so, in particular, the Rubin–Stark conjecture is valid for (K/k, S, V , T)).

Proof. At the outset we note that, for any H ∈�∗, the map νH restricts to an injection⋂|V|
Z[G/H] O×

KH ,S,T → ⋂|V|
Z[G] O×

K,S,T (cf. [17, Remark 4·13]). By Proposition 4·2, it is hence

sufficient to prove that εV
KH/k,S,T belongs to pm−1Ic

G/H

⋂|V|
Z[G/H] O×

KH ,S,T for every H ∈�∗.

By the assumption |S| ≥ |V| + 2, we may and will assume KH �= k so that KH ∈�.
We now first claim that for this purpose it is enough to prove that im(εV

KH/k,S,T ) is con-

tained in pm−1I1+c
G/H . To justify this, we apply Lemma 2·3 (ii) to fix a representative [P0

φ→ P1]
of the complex C•

KH ,S,T in Dp(Z[G/H]). From [49, Lemma B·6] we then obtain an exact
sequence

0 −→
⋂|V|

Z[G/H]
O×

KH ,S,T −→
∧|V|

Z[G/H]
P0

φ−→ P1 ⊗Z[G/H]

∧|V|−1

Z[G/H]
P0. (4·6)

In particular, we may view εV
KH/k,S,T as an element of

∧|V|
Z[G/H] P0. Now, if im(εV

KH/k,S,T ),

which equals {F(εV
KH/k,S,T ) | F ∈ ∧|V|

Z[G/H] HomZ[G](P0, Z[G])}, is contained in pm−1I1+c
G/H ,

then εV
KH/k,S,T belongs to the module pm−1I1+c

G/H

∧|V|
Z[G] P0 (cf. [17, Proposition 4·17]). We

may therefore write εV
KH/k,S,T = pm−1(σH − 1)1+ca with σH a generator of G/H and a an

element of
∧|V|

Z[G] P0. From the exact sequence (4·6) we then see that

pm−1(σH − 1)1+c · φ(a) = φ(pm−1(σH − 1)1+ca) = φ(εV
KH/k,S,T ) = 0.

Since P′ := P1 ⊗Z[G/H]
∧|V|−1

Z[G/H] P0 is Z-torsion free, this implies that (σH − 1)1+c · φ(a)

vanishes. As (σH − 1)P′ and (P′)G/H = ker{P′ ·(σH−1)−→ P′} intersect trivially because P’ is
G/H-cohomologically trivial, it then follows by induction on c that (σH − 1)φ(a) vanishes.
Exactness of (4·6) now shows that (σH − 1)a belongs to

⋂|V|
Z[G/H] O×

KH ,S,T , as required to

prove that εV
KH ,S,T belongs to pm−1(σH − 1)c ⋂|V|

Z[G/H] O×
KH ,S,T .

It now remains to prove that im(εV
KH/k,S,T ) is contained in pm−1I1+c

G/H . We may and will

assume that no place in S \ V splits completely in KH/k, since otherwise εV
KH/k,S,T vanishes.

Thus, every place in S \ V has full decomposition group in KH/k. Since we assume (1·3) to
hold for KH/k it is enough to prove, in this situation, that Fitt|V|

Z[G/H](SelKH ,S,T )# ⊆ pm−1I1+c
G/H .

To verify this inclusion, we use the ‘transpose’ Selmer group defined in Lemma 2·3 (i)
and the equality

Fitt|V|
Z[G/H](SelKH ,S,T )# = Fitt|V|

Z[G/H](SeltrKH ,S,T )

of [17, Lemma 2·8]. It then suffices to verify that Fitt|V|
Z[G/H](Seltr

KH ,S,T ) ⊆ pm−1I1+c
G/H .
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For this purpose, we first note that YKH ,V is a free direct summand of XKH ,S
∼= YKH ,V ⊕

XKH ,S\V , hence also of Seltr
KH ,S,T . We may thus find a Z[G/H]-module M such that

Seltr
KH ,S,T

∼= M ⊕ YKH ,V and one has the following modified version of the exact sequence
in Lemma 2·3 (i):

0 −→ ClKH ,S,T −→ M −→ XKH ,S\V −→ 0. (4·7)

Setting d := |S \ V|, one has XKH ,S\V
∼=Zd−1 and fixing again a generator σH of G/H,

Fitt0Z[G/H](XKH ,S\V ) = Id−1
G/H = (σH − 1)d−1Z[G/H].

In particular, Fitt0Z[G/H](XKH ,S\V ) is a principal ideal and so we may apply [31,
Lemma 2·5 (ii)] to the exact sequence (4·7) to infer that

Fitt|V|
Z[G/H](SeltrKH ,S,T ) = Fitt0Z[G/H](M) = Fitt0Z[G/H](ClKH ,S,T ) · Fitt0Z[G/H](XKH ,S\V )

= Fitt0Z[G/H](ClKH ,S,T ) · Id−1
G/H .

Fix a place v ∈ S \ V and recall that we may assume that v has full decomposi-
tion group in KH/k. If we write HS,T (KH) and HS,T (k) for the (S, T)-ray class fields
of KH and k, respectively, then HS,T (k) ∩ KH = k since v splits completely in HS,T (k).
Thus, we may identify Gal(HS,T (k)/k) ∼= Gal(KH · HS,T (k)/KH) and hence the restriction
map Gal(HS,T (KH)/KH) → Gal(HS,T (k)/k) is surjective. By class field theory, the restric-
tion map corresponds to the norm map ClKH ,S,T → Clk,S,T and so, in particular, the map
ClKH ,S,T → Clk,S,T ⊗Z Fp ∼= (Z/pZ)sp is surjective as well. This map is G/H-equivariant,
thus we obtain an inclusion

Fitt0Z[G/H](ClKH ,S,T ) ⊆ Fitt0Z[G/H]

(
(Z/pZ)sp

) =
sp∏

i=1

(pZ[G/H] + IG/H) ⊆
sp∑

i=0

piI
sp−i
G/H .

By the previous discussion, we therefore have an inclusion

Fitt|V|
Z[G/H](SeltrKH ,S,T ) ⊆ ( sp∑

i=0

piI
sp−i
G/H

) · Id−1
G/H

=
sp∑

i=0

piI
sp−i+d−1
G/H

⊆ ( sp∑
i=0

piI
sp−i+d−c−1
G/H

) · Ic
G/H .

Since σH is of order p, we have (σH − 1)p ≡ σ
p
H − 1 = 0 mod p and so (σH − 1)p is divis-

ible by p in Z[G/H]. Noting that the quotient Z[G/H]/IG/H ∼=Z is torsion-free, we see that
(σH − 1)p is in fact divisible by p(σH − 1). From this it follows that (σH − 1)sp−i+d−c−1 is
divisible by pmax{0,�(sp−i+d−c−2)/(p−1)�}(σH − 1). As a consequence,

sp∑
i=0

piI
sp−i+d−c−1
G/H ⊆

sp∑
i=0

pi+�(sp−i+d−c−2)/(p−1)�IG/H ⊆ p�(sp+d−c−2)/(p−1)�IG/H ,
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where we have used that

i + �sp − i + d − c − 2

p − 1
� = � (p − 1)i + sp − i + d − c − 2

p − 1
� ≥ �sp + d − c − 2

p − 1
�

as a consequence of p − 1 ≥ 1. Now,

d + sp − c − 2

p − 1
= |S| − |V| + sp − c − 2

p − 1
≥ m − 1 ⇔

|S| ≥ |V| − sp + (p − 1)(m − 1) + 2 + c

and so Fitt|V|
Z[G/H](Seltr

KH ,S,T ) is contained in pm−1I1+c
G/H as soon as |S| ≥ |V| − sp +

(p − 1)(m − 1) + 2 + c. This concludes the proof that im(εV
K/k,S,T ) is contained in pm−1I1+c

G/H ,
as required.

We can now give the proof of Theorem 1·1.

Proof (of Theorem 1·1): Write Hk,p and HK for the extensions of k and K that corre-
spond with Clk,S,T ⊗Z Fp and ClK,S,T via class field theory. That is, Hk,p is the maximal
p-elementary abelian extension of k that is unramified outside T and in which all places in S
split completely, and HK is the maximal abelian extension of K that is unramified outside TK

and in which all places in SK split completely. Note that HK is Galois over k. By Cebotarev’s
density theorem, we may then choose a finite set W of prime ideals of k that has all of the
following properties:

(i) W is disjoint from S ∪ T;

(ii) every place in W splits completely in K · Hk,p;

(iii) {Frobp | p ∈ W} is a generating set for Gal(HK/K · Hk,p).

In particular, one has Clk,S′,T ⊗Z Zp = Clk,S,T ⊗Z Fp with S′ := S ∪ W. Class field theory
then provides for a commutative diagram

Cl ′ Gal( / )

Cl ⊗ZF Gal( / ),

�

˜N /

�

where the right-hand vertical arrow is the natural restriction map and ÑK/k is the composite
of the ‘norm’ map ClK,S′,T → Clk,S′,T induced by the norm NK/k : K× → k× and the pro-
jection Clk,S′,T → Clk,S,T ⊗Z Fp. As a consequence, we obtain a G-equivariant isomorphism
ClK,S′,T ∼= ÑK/k(ClK,S′,T ), and hence an exact sequence of Z[G]-modules

0 −→O×
K,S,T −→O×

K,S′,T
ψ−→ YK,W

δ−→ ClK,S,T −→ ÑK/k(ClK,S′,T ) −→ 0 (4·8)

with ψ : O×
K,S′,T → YK,W the map a 
→ ∑

w∈WK
ordw(a)w and δ : YK,W → ClK,S,T sends

w ∈ WK to the class of w in ClK,S,T .
Fix a labelling W = {v|S|+1, . . . , v|S′|} and, for each j ∈ {|S| + 1, . . . , |S′|}, an extension

wj of vj to K. By condition (ii) every place of K above a fixed vj is of the form σwj for
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some σ ∈ G, which allows us to define a map w∗
j : YK,W →Z[G] by sending

∑
w∈WK

aww to∑
σ∈G aσwσ (so w∗

j is the ‘dual’ of wj). Now, if a ∈O×
K,Sj,T

with Sj := S ∪ {vj}, then

ψ(a) =
|S′|∑

l=|S|+1

(w∗
l ◦ψ)(a)wl = (w∗

j ◦ψ)(a)wj

belongs to the kernel of δ by exactness of (4·8). This shows that (w∗
j ◦ψ)(a) annihilates the

class of wj in ClK,S,T . Since A := ker{ClK,S,T → ÑK/k(ClK,S′,T )} is generated over Z[G] by
δ(w|S|+1), . . . , δ(w|S′|) by exactness of (4·9), we have thereby proved that

|S′|⋂
j=|S|+1

(w∗
j ◦ψ)(O×

K,Sj,T
) ⊆ AnnZ[G](A). (4·9)

We now claim that im(εV
K/k,S,T ) is contained in IG times the intersection on the left- hand

side of (4·9). To do this, we first note that s′
p := dimFp (Clk,S′,T ⊗Z Fp) is equal to sp because

Clk,S′,T ⊗Z Fp = Clk,S,T ⊗Z Fp by condition (ii). Setting V ′ := V ∪ W, it then follows that

|S′| = |W| + |S| ≥ |W| + max{|V| + 2, |V| − sp + (p − 1)(m − 1) + 3}
≥ max{|V ′| + 2, |V ′| − s′

p + (p − 1)(m − 1) + 3}.

By Lemma 4·3, we therefore have that εV ′
K/k,S′,T belongs to IG · ⋂|V ′|

Z[G] O×
K,S′,T , hence can

be written as εV ′
K/k,S′,T = ∑t

i=1 xiai with a natural number t and elements x1, . . . , xt ∈ IG and

a1, . . . , at ∈ ⋂|V ′|
Z[G] O×

K,S′,T .
At this stage, it is convenient to introduce some general notation. For a Z[G]-module M,

we denote its Z[G]-linear dual by M∗ := HomZ[G](M, Z[G]). Given f ∈ M∗ and an integer
r ≥ 1, we then define a map

f (r) :
∧r

Z[G]
M →

∧r−1

Z[G]
M,

c1 ∧ · · · ∧ cr 
→
r∑

i=1

( − 1)i · f (ci) · c1 ∧ · · · ∧ ĉi ∧ · · · ∧ cr,

where the notation ĉi means omission of ci. Iteration then yields a morphism

ξ r,s :
∧s

Z[G]
M → HomZ[G](

∧r

Z[G]
M,

∧r−s

Z[G]
M),

f1 ∧ · · · ∧ fs 
→ f (r−s+1)
s ◦ · · · ◦ f (r)

1

for every s ≤ r. (The special case r = s of this construction was already discussed in
Definition 2·1.) By abuse of notation we will simply write f1 ∧ · · · ∧ fs in place of
ξ r,s(f1 ∧ · · · ∧ fs).

Returning now to the concrete setting at hand, we set ψl := w∗
l ◦ψ and, for every

f ∈ ∧|V|
Z[G] (O×

K,S′,T )∗ and j ∈ {|S| + 1, . . . , |S′|}, define the map

�j,f := (
(
∧

|S|+1≤l≤|S′|
l �=j

ψl) ∧ f
)

: R⊗Z

∧|V ′|
Z[G]

O×
K,S′,T →R⊗Z O×

K,S′,T .
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For every g ∈ (O×
K,S′,T )∗ and i ∈ {1, . . . , t}, one then has that (g ◦�j,f )(ai) belongs to Z[G].

This shows that

�j,f (ai) ∈ {
a ∈R⊗Z O×

K,S′,T | g(a) ∈Z[G] for all g ∈ (O×
K,S′,T )∗} =O×

K,S′,T

because O×
K,S′,T is Z-torsion free. In addition, ψl ◦�j,f =�j,f ∧ψl = 0 for all l �= j

so that in fact �j,f (ai) ∈ ⋂
l �=j kerψl =O×

K,Sj,T
. A similar argument also shows that( ∧

|S|+1≤l≤|S′| ψl
)
(ai) belongs to

⋂|V|
Z[G] O×

K,S,T .

Note that O×
K,S′,T/O×

K,S,T is Z-torsion free (by (4·8)), hence that the natural restriction map

res : (O×
K,S′,T )∗ → (O×

K,S,T )∗ is surjective. For any f ∈ ∧|V|
Z[G] (O×

K,S,T )∗ we can therefore find

f̃ ∈ ∧|V|
Z[G] (O×

K,S′,T )∗ with (
∧|V| res)(̃f ) = f . For any j ∈ {|S| + 1, . . . , |S′|}, we then obtain

that

(( ∧
|S|+1≤l≤|S′| ψl

) ∧ f
)
(ai) = ±ψj((�j,̃f )(ai)) ⊆ψj(O×

K,Sj,T
).

Since this inclusion holds for every such j, we infer that in fact

(( ∧
|S|+1≤l≤|S′| ψl

) ∧ f
)
(ai) ⊆

⋂|S′|
j=|S|+1

ψj(O×
K,Sj,T

).

Now, by [53, Proposition 3·6] (see also [48, Proposition 5·2]) one has

( ∧
|S|+1≤l≤|S′| ψl

)
(εV ′

K/k,S′,T ) = ±εV
K/k,S,T

and so, for any f ∈ ∧|V|
Z[G] (O×

K,S,T )∗, we deduce that

f (εV
K/k,S,T ) = ±(( ∧

|S|+1≤l≤|S′| ψl
) ∧ f

)
(εV ′

K/k,S′,T )

= ±
t∑

i=1

xi ·
(( ∧

|S|+1≤l≤|S′| ψl
) ∧ f

)
(ai)

⊆ IG ·
⋂|S′|

j=|S|+1
ψj(O×

K,Sj,T
),

as claimed. From (4·9), it now follows that im(εV
K/k,S,T ) is contained in IG · AnnZ[G](A). As

ÑK/k(ClK,S′,T ) (which carries the trivial G-action) is annihilated by IG, we conclude from
the tautological exact sequence

0 −→ A −→ ClK,S,T −→ ÑK/k(ClK,S′,T ) −→ 0

that any element in im(εV
K/k,S,T ) annihilates ClK,S,T , as required to prove Theorem 1·1.
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