We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present here a description and an analysis of the modifications in the growth behaviour of GaN induced by the presence of foreign species. The particular cases of Mg and Si are analysed. Profound changes, both in microscopic and macroscopic scales, occur in presence of Mg, even for fluxes of about 1/1000th of the Ga flux. The growth rate can be increased by almost 50%, depending of the III/V ratio and on the amount of Mg. A theoretical model is proposed to describe the observed effect. It is found that Mg induces changes in the Ga and N diffusion barriers and acts as a surfactant. The effect is stronger on the α-GaN than on the β-GaN, where N is more tightly bonded. The effect of Si is by far less pronounced, probably because it is more easily incorporated than Mg, and its effect on the surface kinetics is then strongly reduced.
We have grown GaN, with addition of a 0.10 to 0.33 % Al, on sapphire(0001) substrates by solid-source RF-plasma assisted MBE. The Al-concentration was determined by secondary ion-mass spectrometry and Auger-electron spectroscopy, while the layer quality was assessed by photoluminescence and high-resolution scanning electron microscopy. Microscopy revealed a meandering pattern and a surface roughness varying with Al-content. The smallest surface roughness was obtained at 0.10 % Al. Photoluminescence revealed two main peaks attributed to the neutral donor-bound exciton. Its energy increased slightly with Al-concentration, which established a correlation between the Al-concentration and the band gap.
Carrier concentration and mobility were measured for intrinsic cubic InN and GaN, and for Si-doped cubic GaN as a function of temperature. Metallic n-type conductivity was found for the InN, while background p-type conductivity was observed for the intrinsic GaN layer. Doping the cubic GaN with Si two regimes were observed. For low Si-doping concentrations, the samples remain p-type. Increasing the Si-doping level, the background acceptors are compensated and the samples became highly degenerated n-type. From the carrier concentration dependence on temperature, the activation energy of the donor and acceptor levels was determined. Attempts were made to determine the scattering mechanisms responsible for the behavior of the mobility as a function of temperature.
The hexagonal domain suppression-effects in cubic-GaNAs grown by metalorganic chemical-vapor deposition (MOCVD) is reported. A thin buffer layer (20 nm) was first grown on a substrate at 853 K using trimethylgallium and dimethylhydrazine (DMHy), and GaNAs samples were grown at different AsH3 flow rates (0 ∼ 450 μmol/min) at 1193 K. As a result, three types of surface morphologies were obtained: the first was a smooth surface (AsH3 = 0 μmol/min); the second was a mirrorlike surface having small and isotropic grains (AsH3 : 45 ∼ 225 μmol/min ); and the third involved three-dimensional surface morphologies (above 450 μmol/min of AsH3 flow rate). Furthermore, it was confirmed using X-ray diffraction that the mixing ratio of hexagonal GaNAs in cubic GaNAs decreased with an increase of the AsH3 flow rate. We could obtain GaNAs having a cubic component of above 85% at AsH3 flow rates above 20 μmol/min. Therefore, the MOCVD growth method using AsH3 and DMHy was mostly effective for suppressing hexagonal GaNAs. It was observed that the photoluminescence intensity of GaNAs was decreased with increase of arsine flow rate.
GaAsN epilayers and quantum wells with a good structural quality and surface morphology were grown by low pressure metal organic vapor phase epitaxy using tertiarybutylhydrazine as a novel nitrogen source. The dependence of nitrogen incorporation on growth temperature was studied for epitaxy with arsine and tertiarybutylarsine precursors. A nitrogen content of 6.7 % was achieved using tertiarybutylhydrazine and tertiarybutylarsine at a low growth temperature of 530 °C. The observed room temperature luminescence shows an increasing redshift with increasing nitrogen contents of the wells.
GaN films grown on SiC (0001) by MBE at various substrate temperatures (600° - 750° C) were characterized by RHEED, STM, x-ray diffraction, AFM and TEM. This work focuses on the TEM analysis of the films’ features, such as stacking faults and dislocations, which are related to the substrate temperature. There are several basal plane stacking faults in the form of cubic inclusions for samples grown at low temperatures compared to those grown at high temperatures. The dislocation density is greatest for the film grown at 600°C, and it steadily decreases with increasing growth temperatures. Despite the presence of various defects, x-ray analysis shows that the GaN films are of high quality. The double crystal rocking curve full width at half maximum (FWHM) for the GaN (0002) peak is less than 2 arc-minutes for all of the films we measured and it decreases with increasing growth temperature.
Transmission electron microscopy (TEM), x-ray diffraction (XRD), photoluminescence (PL) and Raman scattering measurements were applied to study the correlation between the microstructure and physical properties of the GaN films grown by light radiation heating metalorganic chemical vapor deposition (LRH-MOCVD), using GaN buffer layer on sapphire substrates. When the density of the threading dislocation (TD) increases about one order of magnitude, the yellow luminescence (YL) intensity is strengthened from negligible to two orders of magnitude higher than the band edge emission intensity. The full width of half maximum (FWHM) of the GaN (0002) peak of the XRD rocking curve was widened from 11 min to 15 min, and in Raman spectra, the width of E2 mode is broadened from 5 cm−1 to 7 cm−1. A “zippers” structure at the interface of GaN/sapphire was observed by high-resolution electron microscope (HREM). Furthermore the origins of TD and relationship between physical properties and microstructures combining the growth conditions are discussed.
The structural evolution of GaN films during the initial growth process of metalorganic chemical vapor deposition (MOCVD) - low temperature nucleation layer growth, annealing, and high temperature epitaxial growth - was investigated in a synchrotron x-ray scattering experiment. The nucleation layer grown at 560°C that was predominantly cubic GaN consisted of tensile-strained aligned domains and relaxed misaligned domains. The hexagonal GaN, transformed from the cubic GaN during annealing to 1100 °C, showed disordered stacking. The atomic layer spacing decreased as the fraction of the hexagonal domains increased. Subsequent growth of epitaxial GaN at 1100 °C resulted in the formation of ordered hexagonal GaN domains with rather broad mosaicity.
In this work, we investigate the structural properties of (GaIn)(AsN)/GaAs multiple quantum wells (MQW) grown at low temperature by metalorganic vapour phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. We demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. Our experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones.
The formation of the {1 10} stacking fault, which has two atomic configurations in wurtzite (Ga,Al,In)N, has been investigated by high resolution electron microscopy and energetic calculations. It originates from steps at the SiC surface and it can form on a flat (0001) sapphire surface. A modified Stillinger-Weber potential was used in order to investigate the relative stability of the two atomic configurations. They have comparable energy in AlN, whereas the 1/2<10 1>{1 10} configuration is more stable in GaN and InN. In GaN layers, only the 1/2<10 1>{1 10} configuration was observed. The 1/6<20 3> configuration was found in small areas inside the AlN buffer layer where it folded rapidly to the basal plane, and when back into the prismatic plane, it took the 1/2<10 1>{1 10} atomic configuration.
GaN decomposition is studied as a function of pressure and temperature in mixed NH3 and H2 flows more characteristic of the MOVPE growth environment. As NH3 is substituted for the 6 SLM H2 flow, the GaN decomposition rate at 1000 °C is reduced from 1×1016 cm−2 s−1 (i.e. 9 monolayers/s) in pure H2 to a minimum of 1×1014 cm−2 s−1 at an NH3 density of 1×1019 cm−3. Further increases of the NH3 density above 1×1019 cm−3 result in an increase in the GaN decomposition rate. The measured activation energy, EA, for GaN decomposition in mixed H2 and NH3 flows is less than the EA measured in vacuum and in N2 environments. As the growth pressure is increased under the same H2 and NH3 flow conditions, the decomposition rate increases and the growth rate decreases with the addition of trimethylgallium to the flow. The decomposition in mixed NH3 and H2 and in pure H2 flows behave similarly, suggesting that surface H plays a similar role in the decomposition and growth of GaN in NH3.
Exposure of wurtzite GaN films grown on Si-polar 6H-SiC(0001) to magnesium during molecular beam epitaxy (MBE) has been studied. In the nitrogen rich regime of MBE growth, GaN films are known to grow with rough morphology. We observe on GaN(0001) that small doses of Mg act as a surfactant, smoothing out this roughness. An interpretation of this surfactant behavior is given in terms of electron counting arguments for the surface reconstructions. Previously, we have reported that larger doses of Mg lead to inversion of the Ga-polar GaN film to produce N-polar GaN. Several Mg-related reconstructions of the resulting GaN(000 ) surface are reported.
We report on the interaction of native point defects with commonly observed planar defects in GaN. Using a pair potential model we find a positive binding energy for all native defects to the three boundary structures investigated indicating a preference for native defects to form in these interfaces. The binding energy is highest for the Ga interstitial and lowest for vacancies. Interstitials, which are not thought to occur in significant concentrations in bulk GaN, should form in the (11 0) IDB and the (10 0) SMB and consequently alter the electronic structure of these boundaries.
AlxGa1−xN {x=30% (doped and undoped), 45% (doped)} thin films were grown by MOCVD on ∼2 μm thick GaN layer using Al2O3 substrate. These films were designed to be the active parts of HFETs with nsμ product of about 1016(Vs)-1. The layers were then studied by means of transmission electron microscopy (TEM) techniques. In this paper, it is shown that the AlxGa1−xN layer thickness was non-uniform due to the presence of V-shaped defects within the AlxGa1−xN films. The nucleation of these V-shaped defects has taken place about 20 nm above the AlxGa1−xN/GaN interface. Many of these V-shaped defects were associated with the presence of the threading dislocations propagating from the GaN/Al2O3 interface. We show that the density of these V-shaped defects increases with the doping level and also with the Al mole fraction in the films. The formation mechanism of the V-shaped defects seems to be related to the concentration of dopants or other impurities at the ledges of the growing film. This suggestion is supported by high resolution TEM analysis. The growth front between the V-shaped defects in the lower Al concentration thin films was planar as compared with the three-dimensional growth in the doped, higher Al concentration film. This interpretation of the origin of the V-shaped defects is consistent with the observed lowering of the Schottky barrier height in n-doped AlGaN/Ni Schottky diodes.
Deliberate oxygen doping of GaN grown by MOVPE has been studied. The electron concentration increased as the square root of the oxygen partial pressure. Oxygen is a shallow donor with a thermal ionization energy of 27 ±2 meV. A compensation ratio of Θ = 0.3-0.4 was determined from Hall effect measurements. The formation energy of ON of EF = 1.3 eV, determined from the experimental data, is lower than the theoretically predicted value.
Si-doping of cubic GaN epilayers grown by an rf plasma-assisted molecular beam epitaxy on semi-insulating GaAs (001) substrates is investigated by secondary ion mass spectroscopy (SIMS), photoluminescence (PL) and by Hall-effect measurements. SIMS measurements show a homogeneous incorporation of Si in cubic GaN epilayers up to concentrations of 5*1019 cm−3. PL shows a clear shift of the donor-acceptor emission to higher energies with increasing Si-doping. Above a Si-flux of 1*1011cm−2s−1 the near band edge lines merge to one broad band due to band gap renormalization and conduction band filling effects. The influence of the high dislocation density (≈1011cm−2) in c-GaN:Si on the electrical properties is reflected in the dependence of the electron mobility on the free carrier concentration. We find that dislocations in cubic GaN act as acceptors and are electrically active.
For the first time, p-type doping through beryllium implantation in gallium nitride was achieved by using a new annealing process, in which the sample was first annealed in forming gas (12% H2 and 88% N2), followed by annealing in pure nitrogen. Variable temperature Hall measurements showed that sheet hole concentrations of the annealed samples were about 1×1013 cm−2 with low hole mobilities. An ionization energy of 127 meV was estimated with a corresponding activation efficiency of ∼ 100%. SIMS results revealed a relationship between the enhanced diffusion of Be and activation of the acceptors.
We investigated the doping characteristics of Mg doped, Mg-Si co-doped, and Mg-Zn co-doped GaN films grown by metalorganic chemical vapor deposition. We have grown p-GaN film with a resistivity of 1.26 Ωcm and a hole density of 4.3 × 1017 cm−3 by means of Mg-Si co-doping technique. The Mg-Si co-doping characteristic was also explained effectively by taking advantage of the concept of competitive adsorption between Mg and Si during the growth. For Mg-Zn co-doping, p-GaN showing a low electrical resistivity (0.7 Ωcm) and a high hole concentration (8.5 × 1017 cm−3) was successfully grown without the degradation of structural quality of the film. Besides, the measured specific contact resistance for Mg-Zn co-doped GaN film is 5.0 × 10−4 cm2, which is lower value by one order of magnitude than that for only Mg doped GaN film (1.9 × 10−3Ωcm2).
Mg-doped superlattices consisting of uniformly doped AlxGa1−xN and GaN layers are analyzed by Hall-effect measurements. Acceptor activation energies of 70 meV and 58 meV are obtained for superlattice structures with an Al mole fraction of x = 0.10 and 0.20 in the barrier layers, respectively. These energies are significantly lower than the activation energy measured for Mg-doped GaN thin films. At room temperature, the doped superlattices have free hole concentrations of 2 × 1018 cm−3 and 4 × 1018 cm−3 for x = 0.10 and 0.20, respectively. The increase in hole concentration with Al content of the superlattice is consistent with theory. The room temperature conductivity measured for the superlattice structures are 0.27 S/cm and 0.64 S/cm for an Al mole fraction of x = 0.10 and 0.20, respectively.
We have measured the doping concentration dependence of the room temperature thermal conductivity (κ) of two series of n-GaN/sapphire (0001) fabricated by hydride vapor phase epitaxy (HVPE). In both sets κ decreased linearly with log n, the variation being about a factor two decrease in κ for every decade increase in n. κ ≈ 1.95 W/cm-K was obtained for one of the most lightly doped samples (n = 6.9×1016 cm−3), higher than the previously reported κ ≈ 1.7-1.8 W/cm-K on lateral epitaxial overgrown material [V.A. Asnin et al, Appl. Phys. Lett. 75, 1240 (1999)] and κ ≈ 1.3 W/cm-K on a thick HVPE sample [E.K. Sichel and J.I. Pankove, J. Phys. Chem. Solids 38, 330 (1977)]. The decrease in the lattice component of κ due to increased phonon scattering from both the impurities and free electrons outweighs the increase in the electronic contribution to κ.