Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T15:52:57.422Z Has data issue: false hasContentIssue false

Picard curves over $\mathbb{Q}$ with good reduction away from 3

Published online by Cambridge University Press:  01 March 2017

Beth Malmskog
Affiliation:
Department of Mathematics and Statistics, Villanova University, 800 Lancaster Avenue, Villanova PA 19085, USA email beth.malmskog@gmail.com
Christopher Rasmussen
Affiliation:
Department of Mathematics and Computer Science, Wesleyan University, 265 Church Street, Exley Tower, 6th Floor, Middletown CT 06549, USA email crasmussen@wesleyan.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over $\mathbb{Q}$ with good reduction away from 3, up to $\mathbb{Q}$-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined and an application to a question of Ihara is discussed.

Type
Research Article
Copyright
© The Author(s) 2017 

References

Achter, J. D. and Pries, R., ‘The integral monodromy of hyperelliptic and trielliptic curves’, Math. Ann. 338 (2007) no. 1, 187206.Google Scholar
Anderson, G. and Ihara, Y., ‘Pro- branched coverings of P 1 and higher circular -units’, Ann. of Math. (2) 128 (1988) no. 2, 271293.Google Scholar
Baker, A., ‘Linear forms in the logarithms of algebraic numbers. I, II, III’, Mathematika 13 (1966) 204216; Mathematika 14 (1967) 102–107; Mathematika 14 (1967) 220–228.Google Scholar
Baker, A. and Wüstholz, G., ‘Logarithmic forms and group varieties’, J. reine angew. Math. 442 (1993) 1962.Google Scholar
Bauer, M. L., ‘The arithmetic of certain cubic function fields’, Math. Comp. 73 (2004) no. 245, 387413 (electronic).Google Scholar
Bauer, M., Teske, E. and Weng, A., ‘Point counting on Picard curves in large characteristic’, Math. Comp. 74 (2005) no. 252, 19832005.Google Scholar
Birch, B. J. and Merriman, J. R., ‘Finiteness theorems for binary forms with given discriminant’, Proc. Lond. Math. Soc. (3) 24 (1972) 385394.CrossRefGoogle Scholar
Bucur, A., David, C., Feigon, B. and Lalín, M., ‘Statistics for traces of cyclic trigonal curves over finite fields’, Int. Math. Res. Not. IMRN 2010 (2010) no. 5, 932967.Google Scholar
Estrada-Sarlabous, J., ‘A finiteness theorem for Picard curves with good reduction’, The ball and some Hilbert problems , Lectures in Mathematics ETH Zürich (Birkhäuser, Basel, 1995) 133143.Google Scholar
Flon, S. and Oyono, R., ‘Fast arithmetic on Jacobians of Picard curves’, Public key cryptography (PKC 2004) , Lecture Notes in Computer Science 2947 (Springer, Berlin, 2004) 5568.Google Scholar
Galbraith, S. D., Paulus, S. M. and Smart, N. P., ‘Arithmetic on superelliptic curves’, Math. Comp. 71 (2002) no. 237, 393405 (electronic).Google Scholar
Győry, K., ‘On the number of solutions of linear equations in units of an algebraic number field’, Comment. Math. Helv. 54 (1979) no. 4, 583600.CrossRefGoogle Scholar
Holzapfel, R.-P., The ball and some Hilbert problems , Lectures in Mathematics ETH Zürich (Birkhäuser, Basel, 1995) . Appendix I by J. Estrada-Sarlabous.Google Scholar
Jones, J. W. and Roberts, D. P., ‘A database of number fields’, LMS J. Comput. Math. 17 (2014) no. 1, 595618.Google Scholar
Lenstra, A. K., Lenstra, H. W. Jr. and Lovász, L., ‘Factoring polynomials with rational coefficients’, Math. Ann. 261 (1982) no. 4, 515534.CrossRefGoogle Scholar
Papanikolas, M. and Rasmussen, C., ‘On the torsion of Jacobians of principal modular curves of level 3 n ’, Arch. Math. (Basel) 88 (2007) no. 1, 1928.CrossRefGoogle Scholar
Pethö, A. and de Weger, B. M. M., ‘Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan–Nagell equation’, Math. Comp. 47 (1986) no. 176, 713727.Google Scholar
Rasmussen, C., ‘An abelian surface with constrained 3-power torsion’, Galois–Teichmüller theory and arithmetic geometry , Advanced Studies in Pure Mathematics 63 (Mathematical Society of Japan, Tokyo, 2012) 449456.CrossRefGoogle Scholar
Rasmussen, C. and Tamagawa, A., ‘Arithmetic of abelian varieties with constrained torsion’, Trans. Amer. Math. Soc. 369 (2017) no. 4, 23952424.Google Scholar
Stein, W. A. et al. , Sage Mathematics Software (Version 6.1.1). The Sage Development Team, 2014. http://www.sagemath.org.Google Scholar
Siegel, C. L., ‘Über einige anwendungen diophantischer approximationen’, Abh. der Preuss. Akad. der Wissenschaften Phys.-Math. Kl 1 (1929) 209266.Google Scholar
Smart, N. P., ‘The solution of triangularly connected decomposable form equations’, Math. Comp. 64 (1995) no. 210, 819840.Google Scholar
Smart, N. P., ‘ S-unit equations, binary forms and curves of genus 2’, Proc. Lond. Math. Soc. (3) 75 (1997) no. 2, 271307.CrossRefGoogle Scholar
de Weger, B. M. M., Algorithms for Diophantine equations , CWI Tract 65 (Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989).Google Scholar
Wood, M. M., ‘The distribution of the number of points on trigonal curves over F q ’, Int. Math. Res. Not. IMRN 2012 (2012) no. 23, 54445456.Google Scholar
Yu, K., ‘ p-adic logarithmic forms and group varieties. III’, Forum Math. 19 (2007) no. 2, 187280.Google Scholar