Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:09:57.270Z Has data issue: false hasContentIssue false

Minimal solvable nonic fields

Published online by Cambridge University Press:  01 May 2013

John W. Jones*
Affiliation:
School of Mathematical and Statistical Sciences,Arizona State University,PO Box 871804,Tempe, AZ 85287,USA email jj@asu.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each solvable Galois group which appears in degree $9$ and each allowable signature, we find polynomials which define the fields of minimum absolute discriminant.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) no. 3–4, 235265; Computational algebra and number theory (London, 1993); MR 1484478.Google Scholar
Butler, G. and McKay, J., ‘The transitive groups of degree up to eleven’, Comm. Algebra 11 (1983) no. 8, 863911; MR 84f:20005.Google Scholar
Diaz y Diaz, F. and Olivier, M., ‘Imprimitive ninth-degree number fields with small discriminants’, Math. Comp. 64 (1995) no. 209, 305321; with microfiche supplement; MR 1260128 (95c:11153).CrossRefGoogle Scholar
Fieker, C. and Klüners, J., ‘Minimal discriminants for fields with small Frobenius groups as Galois groups’, J. Number Theory 99 (2003) no. 2, 318337; MR 1968456 (2004f:11147).Google Scholar
‘The GAP group, GAP—groups, algorithms, and programming, version 4.4’, 2006, http://www.gap-system.org.Google Scholar
Grundman, H. G., Smith, T. L. and Swallow, J. R., ‘Groups of order 16 as Galois groups’, Exp. Math. 13 (1995) no. 4, 289319; MR 1358210 (96h:12005).Google Scholar
Jones, J. W. and Roberts, D. P., ‘A database of global fields’ (in preparation) web site: http://hobbes.LA.asu.edu/NFDB.Google Scholar
Jones, J. W. and Roberts, D. P., ‘Sextic number fields with discriminant $\mathop{(- 1)}\nolimits ^{j} {2}^{a} {3}^{b} $ ’, Number theory, Ottawa, ON, 1996, CRM Proceedings & Lecture Notes 19 (American Mathematical Society, Providence, RI, 1999) 141172; MR 1684600 (2000b:11142).Google Scholar
Jones, J. W. and Roberts, D. P., ‘The tame-wild principle for discriminant relations for number fields’, 2012 (submitted) http://arxiv.org/pdf/1208.5806v1.pdf.Google Scholar
Jones, J. W. and Wallington, R., ‘Number fields with solvable Galois groups and small Galois root discriminants’, Math. Comp. 81 (2012) no. 277, 555567; MR 2833508 (2012e:11182).Google Scholar
Klüners, J. and Malle, G., ‘A database for field extensions of the rationals’, LMS J. Comput. Math. 4 (2001) 182196; http://galoisdb.math.upb.de; MR 2003i:11184.Google Scholar
‘The $L$ -functions and modular forms database’, 2012, http://www.LMFDB.org/GaloisGroup, transitive group information.Google Scholar
‘The PARI group, Bordeaux, Pari/gp, version 2.3.5’, 2010.Google Scholar
Serre, J.-P., ‘Minorations de discriminants’, Œuvres, vol. III (Springer, Berlin, 1986) 240243; MR 926691 (89h:01109c).Google Scholar
Suzuki, M., ‘On the finite group with a complete partition’, J. Math. Soc. Japan 2 (1950) 165185.CrossRefGoogle Scholar
Takeuchi, K., ‘Totally real algebraic number fields of degree 9 with small discriminant’, Saitama Math. J. 17 (1999) 6385; (2000); MR 1740248 (2001a:11181).Google Scholar
Voight, J., ‘Enumeration of totally real number fields of bounded root discriminant’, Algorithmic number theory, Lecture Notes in Computer Science 5011 (Springer, Berlin, 2008) 268281; MR 2467853 (2010a:11228).CrossRefGoogle Scholar
Voight, J., ‘Tables of totally real number fields’, 2012, http://www.cems.uvm.edu/~jvoight/nf-tables/index.html.Google Scholar