Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:31:40.607Z Has data issue: false hasContentIssue false

Computing Galois representations of modular abelian surfaces

Published online by Cambridge University Press:  01 August 2014

Jinxiang Zeng*
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China email cengjx09@mails.tsinghua.edu.cn

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}f\in S_2(\Gamma _0(N))$ be a normalized newform such that the abelian variety $A_f$ attached by Shimura to $f$ is the Jacobian of a genus-two curve. We give an efficient algorithm for computing Galois representations associated to such newforms.

Type
Research Article
Copyright
© The Author 2014 

References

Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system I: The user language’, J. Symbolic Comput. 24 (1997) no. 3–4, 235265.Google Scholar
Bosman, J., ‘Explicit computations with modular Galois representations’, PhD Thesis, Universiteit Leiden, December 2008, available at https://openaccess.leidenuniv.nl/.Google Scholar
Bosman, J., ‘Modular forms applied to the computational inverse Galois problem’, Preprint, 2011,arXiv:1109.6879v1 [math.NT].Google Scholar
Derickx, M., van Hoeij, M. and Zeng, J., ‘Computing Galois representations and equations for modular curves $X_H(\ell )$’, Preprint, 2013, arXiv:1312.6819v1 [math.NT].Google Scholar
Dokchitser, T. and Dokchitser, V., ‘Identifying Frobenius elements in Galois groups’, Algebra Number Theory 7 (2013) no. 6, 13251352.CrossRefGoogle Scholar
Edixhoven, S. J. and Couveignes, J.-M., Computational aspects of modular forms and Galois representations, Annals of Mathematical Studies 176 (Princeton University Press, 2011) (with R. S. de Jong, F. Merkl and J. G. Bosman).Google Scholar
Edixhoven, S. J., ‘The weight in Serres conjectures on modular forms’, Invent. Math. 109 (1992) no. 3, 563594.CrossRefGoogle Scholar
González-Jiménez, E. and González, J., ‘Modular curves of genus 2’, Math. Comp. 72 (2003) no. 241, 397418.CrossRefGoogle Scholar
González-Jiménez, E., González, J. and Guárdia, J., ‘Computations on modular Jacobian surfaces’, Algorithmic number theory, Lecture Notes in Computer Science 2369 (Springer, Berlin, 2002) 189197.CrossRefGoogle Scholar
Mascot, N., ‘Computing modular Galois representations’, Rend. Circ. Mat. Palermo (2) 62 (2013) 451476.CrossRefGoogle Scholar
Moon, H. and Taguchi, Y., ‘Refinement of Tate’s discriminant bound and non-existence theorems for mod p Galois representations’, Doc. Math. Extra Volume Kato (2003) 641654.Google Scholar
Oort, F. and Ueno, K., ‘Principally polarized abelian varieties of dimension two or three are Jacobian varieties’, J. Fac. Sci. Univ. Tokyo, Sec. IA 20 (1973) 377381.Google Scholar
Gaudry, P. and Schost, É., ‘Modular equations for hyperelliptic curves’, Math. Comp. 74 (2005) no. 249, 397418.Google Scholar
Gaudry, P., Kohel, D. and Smith, B., ‘Counting points on genus 2 curves with real multiplication’, Advances in Cryptology-Asiacrypt 2011, Lecture Notes in Computer Science 7073 (eds Lee, D. H. and Wang, H.; Springer, Berlin, 2011) 504519.CrossRefGoogle Scholar
Sturm, J., ‘On the congruence of modular forms’, Number theory (New York, 1984–1985), Lecture Notes in Mathematics 1240 (Springer, Berlin, 1987) 275280.Google Scholar
Tian, P., ‘Further computations of Galois representations associated to modular forms’, Preprint, 2013,arXiv:1311.0577v1 [math.NT].Google Scholar
Uchida, Y., ‘Canonical local heights and multiplication formulas for the Jacobians of curves of genus 2’, Acta Arith. 149 (2011) 111130.CrossRefGoogle Scholar
Weil, A., ‘Zum Beweis des Torellischen Satzes’, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. (1957) 3353.Google Scholar
Zeng, J. and Yin, L., ‘On the computation of coefficients of modular forms: the reduction modulo p approach’, Math. Comp. to appear.Google Scholar