Hostname: page-component-857557d7f7-d5hhr Total loading time: 0 Render date: 2025-11-20T19:49:49.166Z Has data issue: false hasContentIssue false

ON THE DESCENT CONJECTURE FOR RATIONAL POINTS AND ZERO-CYCLES

Published online by Cambridge University Press:  19 November 2025

Nguyen Manh Linh*
Affiliation:
Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS , Paris, France

Abstract

The descent method is one of the approaches to study the Brauer–Manin obstruction to the local–global principle and to weak approximation on varieties over number fields, by reducing the problem to ‘descent varieties’. In recent lecture notes by Wittenberg, he formulated a ‘descent conjecture’ for torsors under linear algebraic groups. The present article gives a proof of this conjecture in the case of connected groups, generalizing the toric case from the previous work of Harpaz–Wittenberg. As an application, we deduce directly from Sansuc’s work the theorem of Borovoi for homogeneous spaces of connected linear algebraic groups with connected stabilizers. We are also able to reduce the general case to the case of finite (étale) torsors. When the set of rational points is replaced by the Chow group of zero-cycles, an analogue of the above conjecture for arbitrary linear algebraic groups is proved.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balestrieri, F and Berg, J (2024) Descent and étale-Brauer obstructions for $0$ -cycles. Int. Math. Res. Not. 2024(16), 1171211748.CrossRefGoogle Scholar
Balestrieri, F, Berg, J, Manes, M, Park, J, and Viray, B (2016) Insufficiency of the Brauer–Manin obstruction for rational points on Enriques surfaces. In Directions in Number Theory, vol. 3 of Association for Women in Mathematics Series, pages 131. Cham: Springer.CrossRefGoogle Scholar
Borovoi, MV and González-Avilés, CD (2014) The algebraic fundamental group of a reductive group scheme over an arbitrary base scheme. Cent. Eur. J. Math. 12(4), 545558.Google Scholar
Borovoi, MV and Kunyavskii, BE (2000) Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group. J. Algebra 225(2), 804821.CrossRefGoogle Scholar
Borovoi, MV (1993) Abelianization of the second nonabelian Galois cohomology. Duke Math. J. 72(1), 217239.CrossRefGoogle Scholar
Borovoi, MV (1996) The Brauer–Manin obstructions for homogeneous spaces with connected or abelian stabilizer. J. Reine Angew. Math. 1996(473), 181194.Google Scholar
Borovoi, MV (1998) Abelian Galois Cohomology of Reductive Groups, vol. 132 of Memoirs of the American Mathematical Society. American Mathematical Society.Google Scholar
Borovoi, MV and van Hamel, J (2009) Extended Picard complexes and linear algebraic groups. J. Reine Angew. Math. 2009(627), 5382.CrossRefGoogle Scholar
Cao, Y, Demarche, C and Xu, F (2019) Comparing descent obstruction and Brauer–Manin obstruction for open varieties. Trans. Am. Math. Soc. 371(12), 86258650.CrossRefGoogle Scholar
Chevalley, C (1954) On algebraic group varieties. J. Math. Soc. Japan 6(3–4), 303324.CrossRefGoogle Scholar
Chernousov, VI (1989) On the Hasse principle for groups of type ${E}_8$ . Dokl. Akad. Nauk SSSR 306(25), 10591063.Google Scholar
Conrad, B (2011) Reductive group schemes (SGA3 Summer school), preprint, 390 pages, https://math.stanford.edu/~conrad/papers/luminysga3.pdf.Google Scholar
Conrad, B (2012) Weil and Grothendieck approaches to adelic points. Enseign. Math. 58(1–2), 6197.CrossRefGoogle Scholar
Colliot-Thélène, J-L (1995) L’arithmétique du groupe de Chow des zéro-cycles. J. Théor. Nombres Bordeaux 7(1), 5173.CrossRefGoogle Scholar
Colliot-Thélène, J-L and Coray, D (1979) L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques. Compos. Math. 39(3), 301332.Google Scholar
Colliot-Thélène, J-L and Sansuc, J-J (1981) On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch. Duke Math. J. 48(2), 421447.CrossRefGoogle Scholar
Colliot-Thélène, J-L and Sansuc, J-J (1987) La descente sur les variétés rationnelles, II. Duke Math. J. 54(2), 375492.CrossRefGoogle Scholar
Colliot-Thélène, J-L and Skorobogatov, AN (2000) Descent on fibrations over ${\mathbf{P}}_k^1$ revisited. Math. Proc. Camb. Philos. Soc. 128(3), 383393.CrossRefGoogle Scholar
Colliot-Thélène, J-L and Skorobogatov, AN (2013) Good reduction of the Brauer–Manin obstruction. Trans. Am. Math. Soc. 365(2), 579590.CrossRefGoogle Scholar
Colliot-Thélène, J-L and Skorobogatov, AN (2021) The Brauer–Grothendieck Group, vol. 71 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics. Springer International Publishing.CrossRefGoogle Scholar
Colliot-Thélène, J-L, Sansuc, J-J, and Sir Swinnerton-Dyer, P (1987) Intersections of two quadrics and Châtelet surfaces, I. J. Reine Angew. Math. 1987(373), 37107.Google Scholar
Colliot-Thélène, J-L, Sansuc, J-J, and Sir Swinnerton-Dyer, P (1987) Intersections of two quadrics and Châtelet surfaces, II. J. Reine Angew. Math. 1987(374), 72168.Google Scholar
Debarre, O (2001) Higher-Dimensional Algebraic Geometry. Universitext. New York: Springer.Google Scholar
Debarre, O (2003) Variétés rationnellement connexes. In Séminaire Bourbaki: volume 2001-2002, exposés 894-908, number 290 in Astérisque, pages 243266. Société mathématique de France, Talk no. 905.Google Scholar
Demazure, M (1970) Groupes réductifs - généralités. In Schemas en Groupes. Séminaire de Geometrie Algebrique du Bois-Marie 1962-1964 (SGA 3) - Tome 3 (Structure des schémas en groupes réductifs), vol. 153 of Lecture Notes in Mathematics, pages 126. Berlin: Springer.Google Scholar
Demazure, M (1970) Groupes réductifs: déploiements, sous-groupes, groupes quotients. In Schemas en Groupes. Séminaire de Geometrie Algebrique du Bois-Marie 1962-1964 (SGA 3) - Tome 3 (Structure des schémas en groupes réductifs), vol. 153 of Lecture Notes in Mathematics, pages 109175. Berlin: Springer.Google Scholar
Demarche, C (2009) Obstruction de descente et obstruction de Brauer–Manin étale. Algebra Number Theory 3(2), 237254.CrossRefGoogle Scholar
Demarche, C (2011) Le défaut d’approximation forte dans les groupes linéaires connexes. Proc. Lond. Math. Soc. 102(3), 563597.CrossRefGoogle Scholar
Demarche, C (2011) Suites de Poitou–Tate pour les complexes de tores à deux termes. Int. Math. Res. Not. 2011(1), 135174.CrossRefGoogle Scholar
Demarche, C and Lucchini Arteche, G (2019) Le principe de Hasse pour les espaces homogènes: réduction au cas des stabilisateurs finis. Compos. Math. 155(8), 15681593.CrossRefGoogle Scholar
Flicker, Y, Scheiderer, C and Sujatha, R (1998) Grothendieck’s theorem on non-abelian ${H}^2$ and local-global principles. J. Am. Math. Soc. 11(3), 731750.CrossRefGoogle Scholar
Fulton, W. Intersection Theory, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete: A Series of Modern Surveys in Mathematics. Folge 3, 2nd ed. New York: Springer.Google Scholar
González-Avilés, CD (2012) Quasi-abelian crossed modules and nonabelian cohomology. J. Algebra 369, 235255.CrossRefGoogle Scholar
González-Avilés, CD (2018) The units-Picard complex and the Brauer group of a product. J. Pure Appl. Algebra 222(9), 27462772.CrossRefGoogle Scholar
González-Avilés, CD (2019) The units-Picard complex of a reductive group scheme. J. Ramanujan Math. Soc. 34(2), 191230.Google Scholar
Graber, T, Harris, J, and Starr, J (2003) Families of rationally connected varieties. J. Am. Math. Soc. 16(1), 5767.CrossRefGoogle Scholar
Giraud, J (1971) Cohomologie non abélienne, vol. 179 of Grundlehren der mathematischen Wissenschaften. Berlin: Springer.CrossRefGoogle Scholar
Grothendieck, A (1967) Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie. Publications Mathématiques de l’IHÉS 32, 5361.Google Scholar
Grothendieck, A (1970) Caractérisation et classification des groupes de type multiplicatif. In Schemas en Groupes. Séminaire de Geometrie Algebrique du Bois-Marie 1962-1964 (SGA 3) - Tome 2 (Groupes de type nultiplicatif, et structure des schemas en groupes generaux), vol. 152 of Lecture Notes in Mathematics, pages 63106. Berlin: Springer.Google Scholar
Grothendieck, A (1970) Groupes de type multiplicatif: homomorphismes dans un schéma en groupes. In Schemas en Groupes. Séminaire de Geometrie Algebrique du Bois-Marie 1962-1964 (SGA 3) - Tome 2 (Groupes de type nultiplicatif, et structure des schemas en groupes generaux), vol. 152 of Lecture Notes in Mathematics, pages 3162. Berlin: Springer.Google Scholar
Grothendieck, A (1970) Groupes diagonalisables. In Schemas en Groupes. Séminaire de Geometrie Algebrique du Bois-Marie 1962-1964 (SGA 3) - Tome 2 (Groupes de type nultiplicatif, et structure des schemas en groupes generaux), vol. 152 of Lecture Notes in Mathematics, pages 130. Berlin: Springer.Google Scholar
Grothendieck, A (1973) Foncteurs fibres, supports, étude cohomologique des morphismes finis. In Théorie des Topos et Cohomologie Etale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4) - Tome 3, vol. 305 of Lecture Notes in Mathematics, pages 366412. Berlin: Springer.Google Scholar
Harari, D (1994) Méthode des fibrations et obstruction de Manin. Duke Math. J. 75(1), 221260.CrossRefGoogle Scholar
Hironaka, H (1964) Resolution of singularities of an algebraic variety over a field of characteristic zero: I. Ann. Math. 79(1), 109203.CrossRefGoogle Scholar
Harari, D and Skorobogatov, AN (2002) Non-abelian cohomology and rational points. Compos. Math. 130(3), 241273.CrossRefGoogle Scholar
Harari, D and Skorobogatov, AN (2005) Non-abelian descent and the arithmetic of Enriques surfaces. Int. Math. Res. Not. 2005(52), 32033228.CrossRefGoogle Scholar
Harari, D and Skorobogatov, AN (2013) Descent theory for open varieties. In Torsors, Étale Homotopy and Applications to Rational Points, vol. 405 of London Mathematical Society Lecture Note Series, pages 250279. Cambridge University Press.CrossRefGoogle Scholar
Harpaz, Y and Wittenberg, O (2016) On the fibration method for zero-cycles and rational points. Ann. Math. 183(1), 229295.CrossRefGoogle Scholar
Harpaz, Y and Wittenberg, O (2020) Zéro-cycles sur les espaces homogènes et problème de Galois inverse. J. Am. Math. Soc. 33(3), 775805.CrossRefGoogle Scholar
Harpaz, Y and Wittenberg, O (2024) Supersolvable descent for rational points. Algebra Number Theory 18(4), 787814.CrossRefGoogle Scholar
Kottwitz, RE (1986) Stable trace formula: Elliptic singular terms. Math. Ann. 275, 365400.CrossRefGoogle Scholar
Kato, K and Saito, S (1986) Global class field theory of arithmetic schemes. In Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, II, vol. 55 of Contemporary Mathematics, pages 255331. American Mathematical Society.CrossRefGoogle Scholar
Liang, Y (2013) Arithmetic of $0$ -cycles on varieties defined over number fields. Annales scientifiques de l’École Normale Supérieure, 4e série, 46(1), 3556.CrossRefGoogle Scholar
Linh, NM (2025) Nonabelian descent types. J. Algebra 661, 380429.CrossRefGoogle Scholar
Manin, YI (1971) Le groupe de Brauer–Grothendieck en géométrie diophantienne. In Actes du Congrès international des Mathématiciens (Nice, 1970), pages 401411. Paris: Gauthier-Villars.Google Scholar
Milne, JS (1980) Etale Cohomology, vol. 33 of Princeton Mathematical Series. Princeton University Press.CrossRefGoogle Scholar
Nagata, M (1963) A generalization of the imbedding problem of an abstract variety in a complete variety. J. Math. Kyoto Univ. 3(1), 89102.Google Scholar
Nishimura, H (1955) Some remark on rational points. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 29(2), 189192.Google Scholar
Neukirch, J, Schmidt, A and Wingberg, K (2008) Cohomology of Number Fields, vol. 323 of Grundlehren der mathematischen Wissenschaften. Berlin: Springer.CrossRefGoogle Scholar
Poonen, B (2010) Insufficiency of the Brauer–Manin obstruction applied to étale covers. Ann. Math. 171(3), 21572169.CrossRefGoogle Scholar
Platonov, VP and Rapinchuk, AS (1994) Algebraic Groups and Number Theory, vol. 139 of Pure and Applied Mathematics. Boston: AcademicPress, Inc.CrossRefGoogle Scholar
Sansuc, J-J (1981) Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math. 1981(327), 1280.Google Scholar
Serre, J-P (1994) Cohomologie Galoisienne: Cinquième édition, révisée et complétée, vol. 5 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Skorobogatov, AN (2001) Torsors and Rational Points, vol. 144 of Cambridge Tracts in Mathematics. Cambridge University Press.CrossRefGoogle Scholar
Skorobogatov, AN (2009) Descent obstruction is equivalent to étale Brauer—Manin obstruction. Math. Ann. 344, 501510.CrossRefGoogle Scholar
Stoll, M (2006) Finite descent obstructions and rational points on curves. Algebra Number Theory 1(4), 349391.CrossRefGoogle Scholar
van Hamel, J (2003) The Brauer–Manin obstruction for zero-cycles on Severi—Brauer fibrations over curves. J. Lond. Math. Soc. 68(2), 317337.CrossRefGoogle Scholar
Weibel, CA (1994) An Introduction to Homological Algebra, vol. 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press.CrossRefGoogle Scholar
Wei, D (2016) Open descent and strong approximation, preprint, 13 pages, https://arxiv.org/abs/1604.00610.Google Scholar
Wittenberg, O (2012) Zéro-cycles sur les fibrations au-dessus d’une courbe de genre quelconque. Duke Math. J. 161(11), 21132166.CrossRefGoogle Scholar
Wittenberg, O (2024) Park City lecture notes: around the inverse Galois problem, preprint, 32 pages, https://arxiv.org/abs/2302.13719, to appear in IAS/Park City Mathematics Series, AMS.Google Scholar