Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:20:42.611Z Has data issue: false hasContentIssue false

EXTREMAL CASES OF RAPOPORT–ZINK SPACES

Published online by Cambridge University Press:  20 January 2021

Ulrich Görtz
Affiliation:
Institut für Experimentelle Mathematik, Universität Duisburg-Essen, 45117Essen, Germany (ulrich.goertz@uni-due.de)
Xuhua He
Affiliation:
The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (xuhuahe@math.cuhk.edu.hk)
Michael Rapoport
Affiliation:
Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115Bonn, Germany and Department of Mathematics, University of Maryland, College Park, MD20742, USA (rapoport@math.uni-bonn.de)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Bhatt, B. and Scholze, P., Projectivity of the Witt vector Grassmannian, Invent. Math. 209(2) (2017), 329423.CrossRefGoogle Scholar
Bourbaki, N., Groupes et Algèbres de Lie, chapters 4–6 (Masson, Paris, 1981).Google Scholar
Cho, S., The basic locus of the unitary Shimura variety with parahoric level structure, and special cycles, Preprint, 2018, arXiv:1807.09997.Google Scholar
Ciubotaru, D. and He, X., Cocenters and representations of affine Hecke algebra, J. Eur. Math. Soc. (JEMS) 19 (2017), 31433177.CrossRefGoogle Scholar
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103161.CrossRefGoogle Scholar
Drinfeld, V., Coverings of p-adic symmetric domains, Funktsional. Anal. i Prilozhen. 10(2) (1976), 2940 (in Russian).Google Scholar
Görtz, U., On the connectedness of Deligne-Lusztig varieties, Represent. Theory 13 (2009), 17.CrossRefGoogle Scholar
Görtz, U. and He, X., Dimension of affine Deligne-Lusztig varieties in affine flag varieties, Doc. Math. 15 (2010), 10091028.Google Scholar
Görtz, U. and He, X., Basic loci in Shimura varieties of Coxeter type, Camb. J. Math. 3(3) (2015), 323353.Google Scholar
Görtz, U., He, X. and Nie, S., Fully Hodge-Newton decomposable Shimura varieties, Peking Math. J. 2 (2019), 99154.Google Scholar
Görtz, U. and Yu, C.-F., The supersingular locus in Siegel modular varieties with Iwahori level structure, Math. Ann. 353 (2012), 465498.Google Scholar
Haines, T., The combinatorics of Bernstein functions, Trans. Amer. Math. Soc. 353 (2001), 12511278.Google Scholar
Haines, T. and Rapoport, M., On parahoric subgroups, Appendix to: G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 118198.Google Scholar
Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies no. 151 (Princeton University Press, Princeton, NJ, 2001).Google Scholar
He, X., Minimal length elements in some double cosets of Coxeter groups, Adv. Math. 215 (2007), 469503.CrossRefGoogle Scholar
He, X., A subalgebra of $0$ -Hecke algebra, J. Algebra 322 (2009), 40304039.Google Scholar
He, X., Closure of Steinberg fibers and affine Deligne-Lusztig varieties, Int. Math. Res. Not. IMRN 2011, no. 14 (2011), 32373260.Google Scholar
He, X., Hecke algebras and $p$ -adic groups, in Current Developments in Mathematics 2015, pp. 73135 (International Press, Somerville, MA, 2016).Google Scholar
He, X., Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 11251141.CrossRefGoogle Scholar
He, X. and Lam, T., Projected Richardson varieties and affine Schubert varietie, Ann. Inst. Fourier (Grenoble) 65 (2015), 23852412.CrossRefGoogle Scholar
He, X., Pappas, G. and Rapoport, M., Good and semi-stable reductions of Shimura varieties, J. Éc. polytech. Math. 7 (2020), 497571.CrossRefGoogle Scholar
He, X. and Rapoport, M., Stratifications in the reduction of Shimura varieties, Manuscripta Math. 152 (2017), 317343.Google Scholar
He, X. and Zhou, R., On the connected components of affine Deligne-Lusztig varieties, Duke Math. J. 169, 14 (2020), 26972765.Google Scholar
Kottwitz, R., Isocrystals with additional structure, Compos. Math. 56 (1985), 201220.Google Scholar
Kottwitz, R., Isocrystals with additional structure. II, Compos. Math. 109 (1997), 255339.CrossRefGoogle Scholar
Kottwitz, R. and Rapoport, M., Minuscule alcoves for $G{L}_n$ and $GS{p}_{2n}$ , Manuscripta Math. 102 (2000), 403428.Google Scholar
Kottwitz, R. and Rapoport, M., On the existence of F-crystals, Comment. Math. Helv. 78 (2003), 153184.Google Scholar
Kudla, S. and Rapoport, M., Notes on special cycles, unpublished notes, version Nov. 2012.Google Scholar
Lusztig, G., Representations of finite Chevalley groups, CBMS Regional Conf. Series in Math. 39 (American Mathematical Society, Providence, RI, 1978).CrossRefGoogle Scholar
Oort, F., A stratification of a moduli space of abelian varieties, in Moduli of Abelian Varieties (Texel Island, 1999), Progress in Mathematics no. 195, pp. 345416 (Birkhäuser, Basel, 2001).CrossRefGoogle Scholar
Rapoport, M., A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271318.Google Scholar
Rapoport, M. and Viehmann, E., Towards a theory of local Shimura varieties, Münster J. Math. 7 (2014), 273326.Google Scholar
Rapoport, M. and Zink, T., Period Spaces for $p$ -Divisible Groups, Annals of Mathematics Studies no. 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Rapoport, M. and Zink, T, A finiteness theorem in the Bruhat-Tits building: an application of Landvogt’s embedding theorem, Indag. Math. (N.S.) 10(3) (1999), 449458.CrossRefGoogle Scholar
Stamm, H., On the reduction of the Hilbert-Blumenthal-moduli scheme with -level structure, Forum Math. 9(4) (1997), 405455.Google Scholar
Tits, J., Reductive groups over local fields, in Automorphic Forms, Representations, and $L$ -Functions, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., no. 33, vol. 1, pp. 2969 (Providence, R.I., 1979).Google Scholar
Viehmann, E., Moduli spaces of local $G$ -shtukas, in Proceedings of the International Congress of Mathematicians 2018, Vol. 2, pp. 14431464 (World Sci. Publ., Hackensack, NJ, 2018).Google Scholar
Vollaard, I., The supersingular locus of the Shimura variety for $GU\left(1,s\right)$ , Canad. J. Math. 62 (2010), 668720.Google Scholar
Vollaard, I. and Wedhorn, T., The supersingular locus of the Shimura variety of GU(1,n-1) II, Invent. Math. 184 (2011), 591627.Google Scholar
Wintenberger, J.-F., Existence de $F$ -cristaux avec structures supplémentaires, Adv. Math. 190 (2005), 196224.CrossRefGoogle Scholar
Zhu, X., Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of Math. (2) 185 (2017), 403492.Google Scholar