Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:40:43.322Z Has data issue: false hasContentIssue false

ON THE REPRESENTATION OF MULTI-IDEALS BY TENSOR NORMS

Published online by Cambridge University Press:  09 February 2011

GERALDO BOTELHO*
Affiliation:
Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902 Uberlândia, Brazil (email: botelho@ufu.br)
ERHAN ÇALIŞKAN
Affiliation:
Yıldız Teknik Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, Davutpaşa Kampüsü, 34210 Esenler, İstanbul, Türkíye (email: caliskan@yildiz.edu.tr)
DANIEL PELLEGRINO
Affiliation:
Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 João Pessoa, Brazil (email: dmpellegrino@gmail.com)
*
For correspondence; e-mail: botelho@ufu.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A tensor norm β=(βn)n=1 is smooth if the natural correspondence where 𝕂=ℝ or ℂ, is always an isometric isomorphism. In this paper we study the representation of multi-ideals and of ideals of multilinear forms by smooth tensor norms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

Geraldo Botelho was supported by CNPq Grant 306981/2008-4; Daniel Pellegrino was supported by CNPq Grant 620108/2008-8 (Edital Casadinho) and CNPq Grant 301237/2009-3.

References

[1]Alencar, R. and Matos, M. C., Some Classes of Multilinear Mappings between Banach Spaces, Publicaciones del Departamento de Análisis Matemático, 12 (Universidad Complutense de Madrid, Madrid, 1989).Google Scholar
[2]Bombal, F., Peréz-García, D. and Villanueva, I., ‘Multilinear extensions of Grothendieck’s theorem’, Q. J. Math. 55 (2004), 441450.CrossRefGoogle Scholar
[3]Botelho, G., Braunss, H.-A., Junek, H. and Pellegrino, D., ‘Holomorphy types and ideals of multilinear mappings’, Studia Math. 177 (2006), 4365.CrossRefGoogle Scholar
[4]Botelho, G. and Pellegrino, D., ‘Two new properties of ideals of polynomials and applications’, Indag. Math. (N.S.) 16 (2005), 157169.CrossRefGoogle Scholar
[5]Botelho, G. and Pellegrino, D., ‘Coincidence situations for absolutely summing nonlinear mappings’, Port. Math. 64 (2007), 175191.CrossRefGoogle Scholar
[6]Çalişkan, E., ‘On characterizations of the space of p-semi-integral multilinear mappings’, Note Mat. 29 (2009), 165184.Google Scholar
[7]Çalişkan, E. and Pellegrino, D. M., ‘On the multilinear generalizations of the concept of absolutely summing operators’, Rocky Mountain J. Math. 37 (2007), 11371154.CrossRefGoogle Scholar
[8]Carando, D., Dimant, V. and Muro, S., ‘Coherent sequences of polynomials ideals on Banach spaces’, Math. Nachr. 282 (2009), 11111133.CrossRefGoogle Scholar
[9]Cilia, R., D’Anna, M. and Gutiérrez, J., ‘Polynomial characterization of ℒ-spaces’, J. Math. Anal. Appl. 275 (2002), 900912.CrossRefGoogle Scholar
[10]Dales, H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs New Series, 24 (Oxford University Press, Oxford, 2000).Google Scholar
[11]Defant, A. and Floret, K., Tensor Norms and Operator Ideals, North-Holland Mathematical Studies, 176 (North-Holland, Amsterdam, 1993).Google Scholar
[12]Defant, A. and Pérez-García, D., ‘A tensor norm preserving unconditionality for L p-spaces’, Trans. Amer. Math. Soc. 360 (2008), 32873306.CrossRefGoogle Scholar
[13]Diestel, J., Fourie, J. H. and Swart, J., The Metric Theory of Tensor Products, Grothendieck’s Résumé Revisited (American Mathematical Society, Providence, RI, 2008).CrossRefGoogle Scholar
[14]Diestel, J., Jarchow, H. and Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[15]Dimant, V., ‘Strongly p-summing multilinear operators’, J. Math. Anal. Appl. 278 (2003), 182193.CrossRefGoogle Scholar
[16]Floret, K. and Hunfeld, S., ‘Ultrastability of ideals of homogeneous polynomials and multilinear mappings on Banach spaces’, Proc. Amer. Math. Soc. 130 (2002), 14251435.CrossRefGoogle Scholar
[17]Grothendieck, A., ‘Résumé de la théorie métrique des produits tensoriels topologiques’, Bol. Soc. Mat. São Paulo 8 (1956), 179.Google Scholar
[18]Lindenstrauss, J. and Pełczyński, A., ‘Absolutely summing operators in L p spaces and their applications’, Studia Math. 29 (1968), 275326.CrossRefGoogle Scholar
[19]Matos, M. C., ‘On multilinear mappings of nuclear type’, Rev. Mat. Univ. Complut. Madrid 6 (1993), 6181.Google Scholar
[20]Matos, M. C., ‘Fully absolutely summing and Hilbert–Schmidt multilinear mappings’, Collect. Math. 54 (2003), 111136.Google Scholar
[21]Pérez-García, D., ‘Operadores multilineales absolutamente sumantes’, PhD Thesis, Universidad Complutense de Madrid, Madrid, 2003.Google Scholar
[22]Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics (Springer, London, 2002).CrossRefGoogle Scholar