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Abstract

A tensor norm β = (βn)
∞

n=1 is smooth if the natural correspondence

(E1 ⊗ · · · ⊗ En ⊗K, βn+1)←→ (E1 ⊗ · · · ⊗ En, βn),

where K= R or C, is always an isometric isomorphism. In this paper we study the representation of
multi-ideals and of ideals of multilinear forms by smooth tensor norms.
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1. Introduction and notation

The idea of describing the dual of a topological tensor product by means of a special
class of bilinear mappings goes back to Grothendieck’s celebrated ‘Résumé’ [17].
For example, in his seminal work Grothendieck showed that integral bilinear forms
correspond to linear functionals on the injective tensor product. With the emergence
of the theory of ideals of multilinear mappings (multi-ideals) between Banach spaces,
several instances of this kind of correspondence have appeared. For example, Matos
in [19] constructs a tensor norm such that linear operators on the tensor product that
are continuous with respect to this norm correspond exactly to the class of nuclear
multilinear mappings.

In the theory of multi-ideals, the possibility of moving smoothly from spaces
of (n + 1)-linear mappings down to spaces of n-linear mappings turned out to be
important (see, for example, [3, 4, 8]). In this note we study tensor norms in which
this transition is smooth, as well as multi-ideals that correspond to such smooth tensor
norms. To be more precise we need some definitions.
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DEFINITION 1.1. An n-tensor norm βn assigns to every n-tuple of normed spaces
E1, . . . , En a reasonable cross norm βn(·) on the full n-fold tensor product E1 ⊗

· · · ⊗ En that satisfies the metric mapping property. The resulting normed space is
denoted by (E1 ⊗ · · · ⊗ En, βn). A tensor norm is a sequence β = (βn)

∞

n=1 where
each βn is an n-tensor norm.

Let E, E1, . . . , En, F be Banach spaces over the same scalar field K, which is
either R or C. We denote by L(E; F) the space of bounded linear operators from
E to F endowed with the usual operator norm. When F =K, we simply write E ′.
By L(E1, . . . , En; F) we mean the space of continuous n-linear mappings from
E1 × · · · × En to F endowed with the usual supremum norm. When E1 = · · · =

En = E we write L(n E; F).

DEFINITION 1.2. An ideal of multilinear mappings (or multi-ideal) M is a subclass
of the class of all continuous multilinear mappings between Banach spaces such that,
given a positive integer n, and Banach spaces E1, . . . , En and F , the components
M(E1, . . . , En; F), defined to be L(E1, . . . , En; F) ∩M, satisfy the following
conditions.

(i) M(E1, . . . , En; F) is a linear subspace of L(E1, . . . , En; F) that contains the
n-linear mappings of finite type.

(ii) The ideal property: if A ∈M(E1, . . . , En; F), u j ∈ L(G j ; E j ) when j =
1, . . . , n and t ∈ L(F; H), then

t ◦ A ◦ (u1, . . . , un) ∈M(G1, . . . , Gn; H).

Moreover, there is a function ‖ · ‖M :M−→ R+ with the following properties.

(iii) ‖ · ‖M restricted to M(E1, . . . , En; F) is a norm for all Banach spaces
E1, . . . , En and F that makes M(E1, . . . , En; F) a Banach space.

(iv) If A :Kn
−→K is defined by A(λ1, . . . , λn)= λ1 · · · λn , then ‖A‖M = 1, for

all n.
(v) If A ∈M(E1, . . . , En; F), u j ∈ L(G j ; E j ) when j = 1, . . . , n and t ∈

L(F; H), then

‖t ◦ A ◦ (u1, . . . , un)‖M ≤ ‖t‖‖A‖M‖u1‖ · · · ‖un‖.

Of course the Banach spaces considered in this definition are all over the same fixed
scalar field. We define

MK
:= {M(E1, . . . , En;K) : n ∈ N and E1, . . . , En are Banach spaces},

and say that MK is an ideal of multilinear forms.

DEFINITION 1.3. We say that a tensor norm β = (βn)
∞

n=1 represents the multi-ideal
M, or M is β-represented, if M(E1, . . . , En; F ′) and (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)

′

are isometrically isomorphic under the canonical mapping

ϕ :M(E1, . . . , En; F ′)−→ (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)
′

T 7→ ϕ(T )(x1 ⊗ · · · ⊗ xn ⊗ y)= T (x1, . . . , xn)(y),

for all n and all Banach spaces E1, . . . , En, F .
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The ideal of multilinear forms MK is represented by β, or MK is β-represented, if
the condition above holds for all components M(E1, . . . , En;K) of MK.

In [16, Theorem 4.5] it is proved that a multi-ideal M is maximal if and only if
M is represented by some (finitely generated) tensor norm. It is well known (see, for
example, [11, Exercise 12.1]) that (E ⊗K, α) is isometrically isomorphic to E via the
correspondence x ⊗ λ←→ λx for all normed spaces E and 2-tensor norms α. Given a
tensor norm β = (βn)

∞

n=1, this property can be rewritten as (E ⊗K, β2)= (E, β1) for
all E . As we will see, this property is not valid for larger n, that is, it is not always true
that (E1 ⊗ · · · ⊗ En, βn) is canonically isomorphic to (E1 ⊗ · · · ⊗ En ⊗K, βn+1)

for all n ≥ 2. This phenomenon motivates the following definition.

DEFINITION 1.4. A tensor norm β = (βn)
∞

n=1 is said to be smooth if, for all natural n
and all normed spaces E1, . . . , En , the natural map

ψ : (E1 ⊗ · · · ⊗ En ⊗K, βn+1)−→ (E1 ⊗ · · · ⊗ En, βn),

ψ(x1 ⊗ · · · ⊗ xn ⊗ λ)= λ(x1 ⊗ · · · ⊗ xn)

is an isometric isomorphism.

In this paper we are concerned with the representation of multi-ideals by smooth
tensor norms. The conclusion of our results and examples is that multi-ideals are
rarely represented by smooth tensor norms, that ideals of multilinear forms are more
often represented by smooth tensor norms, and that the representation of an ideal of
multilinear forms by a smooth tensor norm yields the representation of some of its
vector-valued components by the same smooth tensor norm.

2. The vector-valued case

The aim of this section is to show that multi-ideals, including their vector-valued
components, are rarely represented by smooth tensor norms. We start with two obvious
examples.

EXAMPLE 2.1. The projective tensor norm π is smooth: given

z =
m∑

j=1

x (1)j ⊗ · · · ⊗ x (n)j ⊗ λ j ∈ E1 ⊗ · · · ⊗ En ⊗K,

we define

z̄ =
m∑

j=1

λ j x (1)j ⊗ · · · ⊗ x (n)j ∈ E1 ⊗ · · · ⊗ En,

and can easily check that πn+1(z)= πn(z̄). So

ψ : (E1 ⊗ · · · ⊗ En ⊗K, πn+1)−→ (E1 ⊗ · · · ⊗ En, πn)

is an isometric isomorphism. So the multi-ideal L of all continuous multilinear
mappings between Banach spaces, which is obviously π -represented (see [10,
Proposition A.3.7]), is represented by a smooth tensor norm.
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EXAMPLE 2.2. The injective tensor norm ε is smooth. Indeed, for z and z̄ as above,

εn+1(z) = sup
ϕl∈BE ′l

,ϕ∈BK′

∣∣∣∣ m∑
j=1

ϕ1(x
(1)
j ) · · · ϕn(x

(n)
j )ϕ(λ j )

∣∣∣∣
= sup
ϕl∈BE ′l

,ϕ∈BK′

∣∣∣∣ m∑
j=1

ϕ1(λ j x (1)j ) · · · ϕn(x
(n)
j )ϕ(1)

∣∣∣∣
= sup
ϕl∈BE ′l

,ϕ∈BK′
|ϕ(1)|

∣∣∣∣ m∑
j=1

ϕ1(λ j x (1)j ) · · · ϕn(x
(n)
j )

∣∣∣∣
= sup
ϕl∈BE ′l

∣∣∣∣ m∑
j=1

ϕ1(λ j x (1)j ) · · · ϕn(x
(n)
j )

∣∣∣∣= εn (̃z),

which proves that

ψ : (E1 ⊗ · · · ⊗ En ⊗K, εn+1)−→ (E1 ⊗ · · · ⊗ En, εn)

is an isometric isomorphism. It has been known since Grothendieck’s ‘Résumé’ that
the multi-ideal LI of integral multilinear mappings is ε-represented (the scalar-valued
bilinear case can be found in [13, Theorem 1.1.21]). We give the details for the sake
of completeness. Denoting by I(E; F) the space of integral linear operators from E
to F and by E1 ⊗̂ε · · · ⊗̂ε En the completion of (E1 ⊗ · · · ⊗ En, εn), we see that

LI(E1, . . . , En; F ′) = I(E1 ⊗̂ε · · · ⊗̂ε En; F ′)

= LI(E1 ⊗̂ε · · · ⊗̂ε En, F;K)
= I(E1 ⊗̂ε · · · ⊗̂ε En ⊗̂ε F;K)
= (E1 ⊗̂ε · · · ⊗̂ε En ⊗̂ε F)′

= (E1 ⊗ · · · ⊗ En ⊗ F, εn+1)
′.

For a proof of the first and third equalities, see [9, Proposition 2.2]; for the second
equality, see [22, Proposition 3.22]; the fourth equality is trivial because I is an
operator ideal. For the last equality, observe that since E1 ⊗̂ε · · · ⊗̂ε En ⊗̂ε F is
the completion of the normed space (E1 ⊗ · · · ⊗ En ⊗ F, εn+1), we can identify
the space (E1 ⊗ · · · ⊗ En ⊗ F, εn+1)

′ with (E1 ⊗̂ε · · · ⊗̂ε En ⊗̂ε F)′ through the
familiar isometry ϕ −→ ϕ, where ϕ is the unique extension of ϕ.

Since all identifications above are by the corresponding standard mappings, their
composition coincides with our mapping ϕ, which proves that LI is ε-represented,
hence represented by a smooth tensor norm.

DEFINITION 2.3. Let β = (βn)
∞

n=1 be a tensor norm. Define Lβ(E1, . . . , En; F) to
be the set of those multilinear mappings A ∈ L(E1, . . . , En; F) whose linearizations

AL : (E1 ⊗ · · · ⊗ En, βn)−→ F
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are continuous, endowed with the norm

‖A‖Lβ := ‖AL : (E1 ⊗ · · · ⊗ En, βn)−→ F‖.

It is easy to see that Lβ is a multi-ideal. Whether or not Lβ is β-represented is a
quite natural question. We shall treat it later.

Next we define a property that is closely related to property (B) of [3].

DEFINITION 2.4. Given A ∈ L(E1, . . . , En,K; F), define A1 ∈ L(E1, . . . , En; F)
by

A1(x1, . . . , xn)= A(x1, . . . , xn, 1).

We say that a multi-ideal M has property [B] if

A ∈M(E1, . . . , En,K; F)⇐⇒ A1 ∈M(E1, . . . , En; F),

and in this case ‖A‖M = ‖A1‖M for all n, for all spaces E1, . . . , En, F and for all
maps A ∈ L(E1, . . . , En; F).

PROPOSITION 2.5. A tensor norm β is smooth if and only if its corresponding multi-
ideal Lβ has property [B].

PROOF. We begin by assuming that β = (βn)
∞

n=1 is a smooth tensor norm. Given
A ∈ L(E1, . . . , En,K; F), consider the chain

E1 ⊗ · · · ⊗ En ⊗K
ψ
−→ E1 ⊗ · · · ⊗ En

ψ−1

−→ E1 ⊗ · · · ⊗ En ⊗K AL
−→ F.

It is not difficult to see that AL = (A1)L ◦ ψ and (A1)L = AL ◦ ψ
−1. Since ψ

and ψ−1 are continuous as β is smooth, it follows that AL is continuous if and
only if (A1)L is continuous, that is, A ∈ Lβ if and only if A1 ∈ Lβ . In this case
‖A‖Lβ = ‖A1‖Lβ because ψ and ψ−1 are isometric isomorphisms, proving that Lβ

has property [B].
Conversely, assume that Lβ has property [B]. Given E1, . . . , En , define

A : E1 × · · · × En ×K−→ (E1 ⊗ · · · ⊗ En, βn),

by A(x1, . . . , xn, λ)= λ(x1 ⊗ · · · ⊗ xn). Then

(A1)L(x1 ⊗ · · · ⊗ xn)= A1(x1, . . . , xn)= A(x1, . . . , xn, 1)= x1 ⊗ · · · ⊗ xn,

showing that (A1)L is the identity operator on E1 ⊗ · · · ⊗ En , and hence is an
isometric isomorphism when this space is endowed with βn on both sides. It follows
that

A1 ∈ Lβ(E1, . . . , En; (E1 ⊗ · · · ⊗ En, βn)).

So A ∈ Lβ(E1, . . . , En,K; (E1 ⊗ · · · ⊗ En, βn)) and

‖A‖Lβ = ‖A1‖Lβ = ‖(A1)L : (E1 ⊗ · · · ⊗ En, βn)

−→ (E1 ⊗ · · · ⊗ En, βn)‖ = 1,
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258 G. Botelho, E. Çalişkan and D. Pellegrino [6]

as Lβ has property [B]. Therefore the map

AL : (E1 ⊗ · · · ⊗ En ⊗K, βn+1)−→ (E1 ⊗ · · · ⊗ En, βn)

is continuous. But AL = ψ , so ψ is continuous and

1= ‖A‖Lβ = ‖AL : (E1 ⊗ · · · ⊗ En ⊗K, βn+1)−→ (E1 ⊗ · · · ⊗ En, βn)‖.

Moreover,
βn(ψ(z))= βn(AL(z))≤ βn+1(z)

for all z ∈ E1 ⊗ · · · ⊗ En ⊗K.
Consider now the map

C : E1 × · · · × En ×K−→ (E1 ⊗ · · · ⊗ En ⊗K, βn+1)

C(x1, . . . , xn, λ)= x1 ⊗ · · · ⊗ xn ⊗ λ.

It is clear that CL is the identity operator on E1 ⊗ · · · ⊗ En ⊗K, hence is an isometric
isomorphism when this space is endowed with βn+1 on both sides. Thus

C ∈ Lβ(E1, . . . , En,K; (E1 ⊗ · · · ⊗ En ⊗K, βn+1)).

So C1 ∈ Lβ(E1, . . . , En; (E1 ⊗ · · · ⊗ En ⊗K, βn+1)) and

‖C1‖Lβ = ‖C‖Lβ = ‖CL : (E1 ⊗ · · · ⊗ En ⊗K, βn+1)

−→ (E1 ⊗ · · · ⊗ En ⊗K, βn+1)‖ = 1,

as Lβ has property [B]. Therefore the map

(C1)L : (E1 ⊗ · · · ⊗ En, βn)−→ (E1 ⊗ · · · ⊗ En ⊗K, βn+1)

is continuous. But (C1)L = ψ
−1, so ψ−1 is continuous and

1= ‖C1‖Lβ = ‖(C1)L : (E1 ⊗ · · · ⊗ En, βn)−→ (E1 ⊗ · · · ⊗ En ×K, βn+1)‖.

Moreover,
βn+1(ψ

−1(w))= βn+1((C1)L(w))≤ βn(w)

for all w ∈ E1 ⊗ · · · ⊗ En . Taking w = ψ(z), we obtain

βn(ψ(z))≤ βn+1(z)≤ βn(ψ(z))

for all z ∈ E1 ⊗ · · · ⊗ En ⊗K, proving that ψ is an isometric isomorphism, that is, β
is smooth. 2

We now turn our attention to multi-ideals that can be represented by smooth tensor
norms.

https://doi.org/10.1017/S1446788710001527 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710001527


[7] Representation of multi-ideals 259

THEOREM 2.6 (Uniqueness of the representation). The tensor norm that represents a
given multi-ideal, if any, is unique.

PROOF. Let M be a multi-ideal that is represented by the tensor norms β = (βn)
∞

n=1
and γ = (γn)

∞

n=1. Let E1, . . . , En−1, En be given. The corresponding operators

ϕβ :M(E1, . . . , En−1; E ′n)−→ (E1 ⊗ · · · ⊗ En, βn)
′

and
ϕγ :M(E1, . . . , En−1; E ′n)−→ (E1 ⊗ · · · ⊗ En, γn)

′

are isometric isomorphisms. So the composition ϕβ ◦ (ϕγ )
−1, which is clearly

the formal identity, is an isometric isomorphism from (E1 ⊗ · · · ⊗ En, γn)
′ to

(E1 ⊗ · · · ⊗ En, βn)
′. By the Hahn–Banach theorem, it follows that γn = βn on

E1 ⊗ · · · ⊗ En . 2

We have already mentioned that [16, Theorem 4.5] ensures the existence of a tensor
norm that represents M, given a maximal multi-ideal M (for the definition see [16]).
Let us denote this tensor norm, which is unique by Theorem 2.6, by βM. Combining
Proposition 2.5 and Theorem 2.6, we obtain the following result.

PROPOSITION 2.7. The following are equivalent for a maximal multi-ideal M.

(a) M is represented by a smooth tensor norm.
(b) βM is smooth.
(c) LβM has property [B].

In particular, if M has property [B] and M= LβM , then M is represented by a
smooth tensor norm.

This result impels us to study the equality M= LβM . As to the projective norm,
by Example 2.1 and Theorem 2.6, we know that βL

= π , so LβL = Lπ = L. We treat
this question together with the question of whether Lβ is β-represented.

PROPOSITION 2.8. The multi-ideal Lε is not ε-represented.

PROOF. Assume for the moment that Lε is ε-represented. On the one hand, by
Example 2.2, LI is ε-represented, and it follows easily that

Lε(E1, . . . , En; F ′)= LI(E1, . . . , En; F ′)

for all n and E1, . . . , En, F . On the other hand, by Example 2.2 and Theorem 2.6, we
know that βLI = ε and from [9, Proposition 2.2], LI ⊆ Lε, hence LI ⊆ Lε = LβLI .

As to the converse inclusion, let n ≥ 2 and F be an infinite-dimensional Banach
space. Assume for the moment that L(

⊗̂
n,εc0; F)= I(

⊗̂
n,εc0; F). As integral

linear operators are absolutely summing [14, Proposition 5.5], it follows that every
continuous linear operator from

⊗̂
n,εc0 to F is absolutely summing. We know

that
⊗̂

n,εc0 has an unconditional basis because c0 =
⊗̂

n,εc0, so by a result of

Lindenstrauss and Pełczyński [18, Theorem 4.2], it follows that
⊗̂

n,εc0 = c0 is
isomorphic to some `1(0), but this is absurd. Therefore there exists a nonintegral

https://doi.org/10.1017/S1446788710001527 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710001527
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operator u ∈ L(
⊗̂

n,εc0; F). Define

A : c0 × · · · × c0 −→ F, A(x1, . . . , xn)= u(x1 ⊗ · · · ⊗ xn).

So AL = u is ε-continuous, hence A ∈ Lε(
nc0; F), but A fails to be integral because

its linearization AL = u is not integral in the injective norm ε. Hence

LβLI (
nc0; F)= Lε(

nc0; F) 6= LI(
nc0; F),

which is a contradiction. 2

Later, in Proposition 2.17, we shall go further. For the moment, the proof above
shows, in particular, that LβLI 6= LI . Corollary 2.12 below provides another example
of the inequality M 6= LβM .

Now we proceed to present some multi-ideals that are represented by tensor norms
but not by smooth tensor norms. First, we give a general criterion.

PROPOSITION 2.9. Let M be a multi-ideal such that

M(E1, . . . , En, F;K)= L(E1, . . . , En, F;K)

and
M(E1, . . . , En; F ′) 6= L(E1, . . . , En; F ′)

for some Banach spaces E1, . . . , En, F and some positive integer n. Then there is no
smooth tensor norm that represents M.

PROOF. Assume that there is a smooth tensor norm β = (βn)
∞

n=1 that represents M.
Since β is smooth, the adjoint ψ∗ of ψ is an isometric isomorphism from the space
(E1 ⊗ · · · ⊗ En ⊗ F, βn+1)

′ to (E1 ⊗ · · · ⊗ En ⊗ F ⊗K, βn+2)
′. We have the follo-

wing chain of isomorphisms:

(E1 ⊗ · · · ⊗ En ⊗ F, βn+1)
′ ψ∗

←→ (E1 ⊗ · · · ⊗ En ⊗ F ⊗K, βn+2)
′

ϕ
←→ M(E1, . . . , En, F;K′)
←→ M(E1, . . . , En, F;K)

id
←→ L(E1, . . . , En, F;K)
←→ (E1 ⊗ · · · ⊗ En ⊗ F, πn+1)

′,

where the mappings that are not labeled are canonical. It follows that the identity
operator is an algebraic isomorphism between the spaces (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)

′

and (E1 ⊗ · · · ⊗ En ⊗ F, πn+1)
′. Since the ideal L is π -represented, we have the

following chain of canonical isomorphisms:

M(E1, . . . , En; F ′)←→ (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)
′

←→ (E1 ⊗ · · · ⊗ En ⊗ F, πn+1)
′

←→ L(E1, . . . , En; F ′).

It follows that the identity operator is an algebraic isomorphism between the spaces
M(E1, . . . , En; F ′) and L(E1, . . . , En; F ′), which is a contradiction. 2
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The next multilinear generalization of the ideal of absolutely summing linear
operators was introduced in [5].

DEFINITION 2.10. Given p ≥ q ≥ 1, a multilinear mapping T ∈ L(E1, . . . , En; F)
is said to be strongly multiple (p, q)-summing if there exists C ≥ 0 such that( m∑

j1,..., jn=1

‖T (x (1)j1
, . . . , x (n)jn

)‖p
)1/p

≤ C sup
φ∈BL(E1,...,En )

( m∑
j1,..., jn=1

|φ(x (1)j1
, . . . , x (n)jn

)|q
)1/q

for all m ∈ N and x (l)jl
∈ El where l = 1, . . . , n and jl = 1, . . . , m. The space of

all strongly multiple (p, q)-summing n-linear mappings from E1 × · · · × En to F
will be denoted by Lsm(p,q)(E1, . . . , En; F). The infimum of the constants C
for which the inequality always holds defines a complete norm ‖ · ‖sm(p,q) on
Lsm(p,q)(E1, . . . , En; F). When p = q we abbreviate to Lsm(p)(E1, . . . , En; F) and
‖ · ‖sm(p).

PROPOSITION 2.11. The multi-ideal Lsm(p), 1≤ p <+∞, of strongly multiple
p-summing multilinear mappings is represented by a tensor norm but not by a smooth
tensor norm.

PROOF. Following the lines of [21, Proposición 4.37], it is not difficult to prove that
Lsm(p) is maximal. It follows from [16, Theorem 4.5] that Lsm(p) is represented by a
tensor norm.

Let us see that Lsm(p) cannot be represented by a smooth tensor norm. It is clear
that

Lsm(p)(E1, . . . , En, F;K)= L(E1, . . . , En, F;K)
for all integers n and Banach spaces E1, . . . , En and F . On the other hand, if we
assumed that Lsm(p)(

n E; F ′)= L(n E; F ′) for all integers n and Banach spaces E
and F , by [5, Proposition 5.2(iii)], then we would have L(E; F ′)=5p(E; F ′) for
all E and F . This is absurd because the canonical injection E ↪→ E

′′

= (E ′)′ fails to
be p-summing for every infinite-dimensional Banach space E . Hence L(n E; F ′) 6=
Lsm(p)(

n E; F ′) for some n and some Banach spaces E and F . By Proposition 2.9 it
follows that Lsm(p) cannot be represented by a smooth tensor norm. 2

COROLLARY 2.12. If M= Lsm(p), then M 6= LβM .

PROOF. It is easy to check that Lsm(p) has property [B]. Indeed, it is enough to
combine the definition of Lsm(p) with the well-known fact that the space of (n + 1)-
linear forms L(E1, . . . , En,K;K) is isometrically isomorphic to the space of n-linear
forms L(E1, . . . , En;K) via the obvious correspondence. Assuming that M= LβM ,
Lsm(p) would be represented by a smooth tensor norm by Proposition 2.7; but this is
not true by Proposition 2.11. 2
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262 G. Botelho, E. Çalişkan and D. Pellegrino [10]

REMARK 2.13. For the sake of completeness, we construct the tensor norm that
represents the multi-ideal Lsm(p). Given normed spaces E1, . . . , En, F and p ≥ 1,
we define βp(u) to be the infimum of all expressions

M∑
m=1

‖(bm, j1
m ,..., jn

m
)

I 1
m ,...,I

n
m

j1
m ,..., jn

m=1
‖q sup

φ∈BL(E1,...,En )

( I 1
m ,...,I

n
m∑

j1
m ,..., jn

m=1

|φ(x (1)
m, j1

m
, . . . , x (n)m, jn

m
)|p
)1/p

,

over all representations of the tensor u ∈ E1 ⊗ · · · ⊗ En ⊗ F of the form

u =
M∑

m=1

I 1
m ,...,I

n
m∑

j1
m ,..., jn

m=1

x (1)
m, j1

m
⊗ · · · ⊗ x (n)m, jn

m
⊗ bm, j1

m ,..., jn
m

where M ∈ N, x (l)
m, j l

m
∈ El when l = 1, . . . , n, bm, j1

m ,..., jn
m
∈ F , j l

m = 1, . . . , I l
m , q ≥ 1

and 1/p + 1/q = 1. Following the lines of [21, Teorema 4.38], one can prove that βp
is a tensor norm and that Lsm(p) is βp-represented. From Proposition 2.11 it follows
that βp is not smooth.

The ideal Lm(p) of multiple p-summing multilinear mappings, introduced by
Matos [20] and, independently, by Bombal et al. [2], has played a central role in
the theory of multi-ideals, even providing unexpected applications (see Remark 2.15).

PROPOSITION 2.14. If 1≤ p ≤ 2, then the ideal Lm(p) of multiple p-summing
multilinear mappings is represented by a tensor norm but not by a smooth tensor norm.

PROOF. It is proved in [21, Proposición 4.39] that Lm(p) is represented by a tensor
norm. Since Lm(p)(

2`1;K)= L(2`1;K) (see [21, Teorema 5.23]) and

5p(`1; `∞)= Lm(p)(`1; `∞) 6= L(`1; `∞)

(obvious), the nonrepresentability by a smooth tensor norm follows from
Proposition 2.9. 2

REMARK 2.15. As proved by Defant and Pérez-Garcı́a [12], the tensor norm that
represents the ideal Lm(p) of multiple p-summing multilinear mappings is the first
example of a tensor norm that preserves unconditionality for L p-spaces.

REMARK 2.16. Everything that we proved for the multi-ideal Lsm(p) of strongly
multiple p-summing multilinear mappings can also be proved, mutatis mutandis, for
the multi-ideal Lss(p) of strongly p-summing multilinear mappings introduced in [15].

We finish this section with another hint that the representation of a (vector-valued)
multi-ideal by a smooth tensor norm is unusual.

PROPOSITION 2.17. The multi-ideal Lε is not represented by a smooth tensor norm.

PROOF. Assume that Lε is represented by a smooth tensor norm β = (βn)
∞

n=1. Fix
a positive integer n and Banach spaces E1, . . . , En . Since Lε is β-represented,
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the mapping

ϕ : (Lε(E1, . . . , En; F ′), ‖ · ‖Lε )−→ (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)
′

T −→ ϕ(T )(x1 ⊗ · · · ⊗ xn ⊗ y)= T (x1, . . . , xn)(y)

is an isometric isomorphism for all F . In particular, taking F =K, we obtain the
following isometric isomorphisms:

(Lε(E1, . . . , En;K′), ‖ · ‖Lε )
∼= (E1 ⊗ · · · ⊗ En ⊗K, βn+1)

′

∼= (E1 ⊗ · · · ⊗ En, βn)
′.

In Corollary 3.2, we prove that the following spaces are also isometrically isomorphic,
with the same canonical correspondences:

(Lε(E1, . . . , En;K′), ‖ · ‖Lε )
∼= (E1 ⊗ · · · ⊗ En ⊗K, εn+1)

′

∼= (E1 ⊗ · · · ⊗ En, εn)
′.

Hence the identity mapping

(E1 ⊗ · · · ⊗ En, εn)
′
−→ (E1 ⊗ · · · ⊗ En, βn)

′

is an isometric isomorphism. Calling on the Hahn–Banach theorem once again, we see
that εn and βn coincide on E1 ⊗ · · · ⊗ En . It follows that the ideal Lε is ε-represented,
which contradicts Proposition 2.8. 2

3. The scalar-valued case

The aim of this section is to show that smooth tensor norms are more suitable to
represent ideals of multilinear forms.

Given a tensor norm β, we write LK
β := (Lβ)

K.

We shall write MK 1
= LK

β if, for all n and E1, . . . , En , the linearization operator
8=8(n, E1, . . . , En), given by

A ∈M(E1, . . . , En;K) 7→8(A) := AL ,

is an isometric isomorphism from M(E1, . . . , En;K) onto (E1 ⊗ · · · ⊗ En, βn)
′.

THEOREM 3.1. Let M be a multi-ideal and β = (βn)
∞

n=1 be a smooth tensor norm.

Then the ideal of multilinear forms MK is β-represented if and only if MK 1
= LK

β .

PROOF. Let n ∈ N and E1, . . . , En be Banach spaces. We shall say that 8 is well
defined, isometric and onto if

8(A)= AL ∈ (E1 ⊗ · · · ⊗ En, βn)
′

for all A ∈M(E1, . . . , En;K) and

8 :M(E1, . . . , En;K)−→ (E1 ⊗ · · · ⊗ En, βn)
′

is isometric and surjective. Assume that 8 is well defined, isometric and onto. It is
clear that8 is linear and injective, so8 is well defined, isometric and onto if and only
if8 is an isometric isomorphism from M(E1, . . . , En;K) onto (E1 ⊗ · · · ⊗ Enβn)

′.
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We continue assuming that 8 is well defined, isometric and onto. Define the
isometric isomorphism h :K′ −→K by h( f )= f (1) for all f ∈K′. It is clear that
the linear mapping

ξ :M(E1, . . . , En;K′)−→M(E1, . . . , En;K), ξ(A)= h ◦ A,

is an isometric isomorphism as well. Considering the chain

M(E1, . . . , En;K′)
ξ
−→ M(E1, . . . , En;K)

8
−→ (E1 ⊗ · · · ⊗ En, βn)

′

ψ∗

−→ (E1 ⊗ · · · ⊗ En ⊗K, βn+1)
′,

where ψ∗ is the adjoint of the linear operator ψ of the definition of smooth tensor
norm, it is not difficult to check that ϕ = ψ∗ ◦8 ◦ ξ (hence 8= (ψ∗)−1

◦ ϕ ◦ ξ−1),
where ϕ = ϕ(n, E1, . . . , En) is the operator of Definition 1.3.

Hence the following are equivalent:

(a) MK 1
= LK

β ;
(b) 8(n, E1, . . . , En) is an isometric isomorphism for all n, E1, . . . , En;
(c) 8(n, E1, . . . , En) is well defined, isometric and onto for all n, E1, . . . , En;
(d) ϕ(n, E1, . . . , En) is an isometric isomorphism for all n, E1, . . . , En;
(e) MK is β-represented.

The proof is thus complete. 2

As we saw before (for example, Proposition 2.8 and Corollary 2.12), the theorem
above cannot be generalized to vector-valued multi-ideals.

COROLLARY 3.2. Let β be a smooth tensor norm. Then the ideal of multilinear forms
LK
β is β-represented and thus is represented by a smooth tensor norm.

EXAMPLE 3.3. The ideal of multilinear forms LK
ε is ε-represented, hence represented

by a smooth tensor norm.

COROLLARY 3.4. Let M be a multi-ideal. If MK is represented by a smooth tensor
norm then MK contains the integral multilinear forms.

PROOF. By Theorem 3.1 we have MK
= LK

β , where β is a smooth tensor norm. Since
ε ≤ β because β is a tensor norm, it follows that

LK
I = LK

ε ⊆ LK
β =MK,

as required. 2

Next we see that sometimes we can construct explicitly the smooth tensor norm that
represents an ideal of multilinear forms.

DEFINITION 3.5. Let p ≥ 1. An n-linear mapping A ∈ L(E1, . . . , En; F) is
p-semi-integral, written A ∈ Lsi(p)(E1, . . . , En; F), if there exist C ≥ 0 and a regular
probability measure µ on the Borel σ -algebra of BE ′1

× · · · × BE ′n , endowed with the
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product of the weak-star topologies σ(E ′l , El) where l = 1, . . . , n, such that

‖A(x1, . . . , xn)‖ ≤ C

(∫
BE ′1
×···×BE ′n

|ϕ1(x1) · · · ϕn(xn)|
p dµ(ϕ1, . . . , ϕn)

)1/p

for all x j ∈ E j , where j = 1, . . . , n. The infimum of the constants C defines a norm
‖ · ‖si(p) on Lsi(p)(E1, . . . , En; F).

It is well known that Lsi(p) is a multi-ideal (see [7]).

PROPOSITION 3.6. When p ≥ 1, the ideal of p-semi-integral multilinear forms LK
si(p)

is represented by a smooth tensor norm.

PROOF. Given u ∈ E1 ⊗ · · · ⊗ En , define

σ n
p (u) := inf ‖(λ j )

m
j=1‖q

(
sup
ϕl∈BE ′l

m∑
j=1

|ϕ1(x1, j ) · · · ϕn(xn, j )|
p
)1/p

where the infimum is taken over all representations of the form

u =
m∑

j=1

λ j x1, j ⊗ · · · ⊗ xn, j ,

where m ∈ N, xl, j ∈ El when l = 1, . . . , n, λ j ∈K when j = 1, . . . , m, and 1/p +
1/q = 1. Standard techniques (and hard work) show that σp = (σ

n
p )
∞

n=1 is a tensor
norm. Let us show that σp is smooth. Given

u =
m∑

j=1

λ j x1, j ⊗ · · · ⊗ xn, j ⊗ b j ∈ E1 ⊗ · · · ⊗ En ⊗K,

we have

(σ n+1
p (u))p

≤ ‖(λ j )
m
j=1‖

p
q sup
ϕl∈BE ′l

,ϕ∈BK′

m∑
j=1

|ϕ1(x1, j ) · · · ϕn(xn, j )ϕ(b j )|
p

= ‖(λ j )
m
j=1‖

p
q sup
ϕl∈BE ′l

,ϕ∈BK′

m∑
j=1

|ϕ1(b j x1, j ) · · · ϕn(xn, j )ϕ(1)|p

≤ ‖(λ j )
m
j=1‖

p
q sup
ϕl∈BE ′l

,ϕ∈BK′

m∑
j=1

|ϕ1(b j x1, j ) · · · ϕn(xn, j )|
p
‖ϕ‖p
|1|p

≤ ‖(λ j )
m
j=1‖

p
q sup
ϕl∈BE ′l

m∑
j=1

|ϕ1(b j x1, j ) · · · ϕn(xn, j )|
p.

Since
∑m

j=1 λ j (b j x1, j )⊗ · · · ⊗ xn, j is a representation ofψ(u) ∈ E1 ⊗ · · · ⊗ En and
each representation of ψ(u) there corresponds to a representation of u, it follows
that σ n+1

p (u)≤ σ n
p (ψ(u)). A similar computation shows that σ n

p (ψ(u))≤ σ
n+1
p (u),

and completes the proof of the smoothness of σp.
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266 G. Botelho, E. Çalişkan and D. Pellegrino [14]

The proof that LK
si(p) is σp-represented is a combination of the arguments of

the proofs of [1, Theorem 4.8] and [7, Theorem 1]. Take E1, . . . , En and f ∈
(E1 ⊗ · · · ⊗ En, σ

n
p )
′, and define the n-linear form A on E1 × · · · × En by

A(x1, . . . , xn)= f (x1 ⊗ · · · ⊗ xn).

For appropriate λ j ∈K such that |λ j | = 1 when j = 1, . . . , m,

m∑
j=1

|A(x1, j , . . . , xn, j )|
p

=

m∑
j=1

|| f (x1, j ⊗ · · · ⊗ xn, j )|
p−1 f (x1, j ⊗ · · · ⊗ xn, j )|

=

∣∣∣∣ m∑
j=1

| f (x1, j ⊗ · · · ⊗ xn, j )|
p−1λ j f (x1, j ⊗ · · · ⊗ xn, j )

∣∣∣∣
=

∣∣∣∣ f

( m∑
j=1

λ j | f (x1, j ⊗ · · · ⊗ xn, j )|
p−1x1, j ⊗ · · · ⊗ xn, j

)∣∣∣∣
≤ ‖ f ‖(E1⊗···⊗En,σ n

p )
′σ n

p

×

( m∑
j=1

λ j | f (x1, j ⊗ · · · ⊗ xn, j )|
p−1x1, j ⊗ · · · ⊗ xn, j

)
≤ ‖ f ‖(E1⊗···⊗En,σ n

p )
′‖(λ j | f (x1, j ⊗ · · · ⊗ xn, j )|

p−1)mj=1‖q

×

(
sup
ϕl∈BE ′l

m∑
j=1

|ϕ1(x1, j ) · · · ϕn(xn, j )|
p
)1/p

= ‖ f ‖(E1⊗···⊗En,σ n
p )
′

( m∑
j=1

| f (x1, j ⊗ · · · ⊗ xn, j )|
p
)1/q

×

(
sup
ϕl∈BE ′l

m∑
j=1

|ϕ1(x1, j ) · · · ϕn(xn, j )|
p
)1/p

.

Hence ( m∑
j=1

|A(x1, j , . . . , xn, j )|
p
)1/p

≤ ‖ f ‖(E1⊗···⊗En,σ n
p )
′

(
sup
ϕl∈BE ′l

m∑
j=1

|ϕ1(x1, j ) · · · ϕn(xn, j )|
p
)1/p

,

which shows that A is p-semi-integral and

‖A‖si(p) ≤ ‖ f ‖(E1⊗···⊗En,σ n
p )
′ = ‖8(A)‖(E1⊗···⊗En,σ n

p )
′ .
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In particular, 8 is surjective. In order to establish the reverse inequality, we take
A ∈ Lsi(p)(E1, . . . , En;K) and let

u =
m∑

j=1

λ j x1, j ⊗ · · · ⊗ xn, j ∈ E1 ⊗ · · · ⊗ En,

where λ j ∈K, xl, j ∈ El , l = 1, . . . , n, and j = 1, . . . , m. From [7, Theorem 1], it
follows that

|8(A)(u)|p =

∣∣∣∣ m∑
j=1

λ j A(x1, j , . . . , xn, j )

∣∣∣∣p

≤ ‖(λ j )
m
j=1‖

p
q

m∑
j=1

|A(x1, j , . . . , xn, j )|
p

≤ ‖(λ j )
m
j=1‖

p
q ‖A‖p

si(p) sup
ϕl∈BE ′l

m∑
j=1

|ϕ1(x1, j ) · · · ϕn(xn, j )|
p,

so |8(A)(u)| ≤ ‖A‖si(p) · σp(u). Since u is arbitrary it follows that

‖8(A)‖(E1⊗···⊗En,σp)′ ≤ ‖A‖si(p),

which completes the proof. 2

Summing up, we conclude the following. First, the multi-ideal Lε is not represented
by a smooth tensor norm (Proposition 2.17), whereas LK

ε is represented by the
smooth tensor norm ε (Example 3.3). Next, the ideal Lsm(p) of strongly multiple
p-summing multilinear mappings is represented by a tensor norm but not by a
smooth tensor norm (Proposition 2.11). As in Proposition 3.6, it can be proved
that LK

sm(p) is represented by a smooth tensor norm. Third, the ideal LK
si(p) of

p-semi-integral multilinear forms is represented by a smooth tensor norm
(Proposition 3.6), and the multi-ideal Lsi(p) of p-semi-integral multilinear mappings
is represented by a tensor norm [6, Proposition 6] but not by a smooth tensor norm
(this is hard work). Finally, it seems that, typically, the behavior of a maximal multi-
ideal M 6= L is that M is not represented by a smooth tensor norm whereas MK is
represented by a smooth tensor norm.

We conclude this paper by showing how the representation of the ideal
of multilinear functionals MK by a smooth tensor norm provides information
about the representation of certain vector-valued components of M. Given
Banach spaces E1, . . . , En, F and a tensor norm β = (βn)

∞

n=1, we shall say that
M(E1, . . . , En; F ′) is β-represented if M(E1, . . . , En; F ′) and (E1 ⊗ · · · ⊗ En ⊗

F, βn+1)
′ are isometrically isomorphic via the canonical mapping of Definition 1.3.

PROPOSITION 3.7. Let M be a multi-ideal such that MK is represented by a smooth
tensor norm β. Then M(E1, . . . , En; F ′) is β-represented whenever the spaces
M(E1, . . . , En; F ′) and M(E1, . . . , En, F;K) are canonically isometrically
isomorphic.
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PROOF. Consider the following chain of canonical mappings:

M(E1, . . . , En; F ′) = M(E1, . . . , En, F;K)
= M(E1, . . . , En, F;K′)
= (E1 ⊗ · · · ⊗ En ⊗ F ⊗K, βn+2)

′

= (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)
′.

The first equality is an isometric isomorphism by assumption; the second equality
holds because the canonical mapping

h :K−→K′, h(λ)(α)= λ · α

is an isometric isomorphism; the third equality is because MK is β-represented; and
the last equality holds because the tensor norm β is smooth. Routine computations
show that the composition of all these mappings yields the canonical mapping from
M(E1, . . . , En; F ′) to (E1 ⊗ · · · ⊗ En ⊗ F, βn+1)

′. 2
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[18] J. Lindenstrauss and A. Pełczyński, ‘Absolutely summing operators in L p spaces and their
applications’, Studia Math. 29 (1968), 275–326.

[19] M. C. Matos, ‘On multilinear mappings of nuclear type’, Rev. Mat. Univ. Complut. Madrid 6
(1993), 61–81.

[20] M. C. Matos, ‘Fully absolutely summing and Hilbert–Schmidt multilinear mappings’, Collect.
Math. 54 (2003), 111–136.

[21] D. Pérez-García, ‘Operadores multilineales absolutamente sumantes’, PhD Thesis, Universidad
Complutense de Madrid, Madrid, 2003.

[22] R. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics
(Springer, London, 2002).

GERALDO BOTELHO, Faculdade de Matemática,
Universidade Federal de Uberlândia, 38.400-902 Uberlândia, Brazil
e-mail: botelho@ufu.br
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