Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:49:43.973Z Has data issue: false hasContentIssue false

ON THE DEFINITION OF GRAPH INDEX

Published online by Cambridge University Press:  10 June 2013

A. STOIMENOW*
Affiliation:
Department of Mathematics, Keimyung University, Darseo-Gu, Dalgubeoldaero 2800, Daegu 704-701, Korea email stoimeno@stoimenov.net
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper discusses a flaw in Murasugi–Przytycki’s Memoir ‘An index of a graph with applications to knot theory’ [Mem. Amer. Math. Soc. 106 (1993)]. We point out and partly fix a gap occurring in the proof of Murasugi–Przytycki’s braid index inequalities involving the graph index. We explain why their notion of index fails to precisely reflect the reduction of Seifert circles by their diagram move, and redefine the index to account for that discrepancy.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Alexander, J. W., ‘A lemma on systems of knotted curves’, Proc. Natl. Acad. Sci. USA 9 (1923), 9395.CrossRefGoogle ScholarPubMed
Bennequin, D., ‘Entrelacements et équations de Pfaff’, Soc. Math. de France, Astérisque 107–108 (1983), 87161.Google Scholar
Birman, J. S., Ko, K. and Lee, S. J., ‘A new approach to the word and conjugacy problems in the braid groups’, Adv. Math. 139 (2) (1998), 322353.CrossRefGoogle Scholar
Birman, J. S. and Menasco, W. W., ‘Studying links via closed braids II: on a theorem of Bennequin’, Topology Appl. 40 (1) (1991), 7182.CrossRefGoogle Scholar
Chalcraft, D. A., ‘On the braid index of links with nested diagrams’, Math. Proc. Cambridge Philos. Soc. 111 (2) (1992), 273281.CrossRefGoogle Scholar
Cromwell, P. R., ‘Homogeneous links’, J. Lond. Math. Soc. (2) 39 (1989), 535552.CrossRefGoogle Scholar
Franks, J. and Williams, R. F., ‘Braids and the Jones-Conway polynomial’, Trans. Amer. Math. Soc. 303 (1987), 97108.CrossRefGoogle Scholar
Freyd, P., Hoste, J., Lickorish, W. B. R., Millett, K., Ocneanu, A. and Yetter, D., ‘A new polynomial invariant of knots and links’, Bull. Amer. Math. Soc. 12 (1985), 239246.CrossRefGoogle Scholar
Lickorish, W. B. R. and Millett, K. C., ‘A polynomial invariant for oriented links’, Topology 26 (1) (1987), 107141.CrossRefGoogle Scholar
Malesic, J. and Traczyk, P., ‘Seifert circles, braid index and the algebraic crossing number’, Topology Appl. 153 (2–3) (2005), 303317.CrossRefGoogle Scholar
Morton, H. R., ‘Seifert circles and knot polynomials’, Proc. Camb. Phil. Soc. 99 (1986), 107109.CrossRefGoogle Scholar
Murasugi, K., ‘On the braid index of alternating links’, Trans. Amer. Math. Soc. 326 (1) (1991), 237260.CrossRefGoogle Scholar
Murasugi, K. and Przytycki, J., ‘An index of a graph with applications to knot theory’, Mem. Amer. Math. Soc. 106 (1993).Google Scholar
Ohyama, Y., ‘On the minimal crossing number and the braid index of links’, Canad. J. Math. 45 (1) (1993), 117131.CrossRefGoogle Scholar
Traczyk, P., ‘Reducing braid index by Murasugi–Przytycki operation’, J. Knot Theory Ramifications 20 (1) (2011), 223229.CrossRefGoogle Scholar
Vogel, P., ‘Representation of links by braids: A new algorithm’, Comment. Math. Helv. 65 (1990), 104113.CrossRefGoogle Scholar
Yamada, S., ‘The minimal number of Seifert circles equals the braid index’, Invent. Math. 88 (1987), 347356.CrossRefGoogle Scholar