Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:23:16.889Z Has data issue: false hasContentIssue false

On The Asymptotic Values of Length Functions In Krull And Finitely Generated commutative Monoids

Published online by Cambridge University Press:  09 April 2009

S. T. Chapman
Affiliation:
Trinity UniversityDepartment of Mathematics 715 Stadium Drive San Antonio, Texas 78212-7200 USA e-mail: schapman@trinity.edu
J. C. Rosales
Affiliation:
Departamento de Álgebra Universidad de Granada E-18071 Granada Spain e-mail: jrosales@ugr.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be a commutative cancellative atomic monoid. We consider the behaviour of the asymptotic length functions and on M. If M is finitely generated and reduced, then we present an algorithm for the computation of both and where x is a nonidentity element of M. We also explore the values that the functions and can attain when M is a Krull monoid with torsion divisor class group, and extend a well-known result of Zaks and Skula by showing how these values can be used to characterize when M is half-factorial.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Anderson, D. D., Anderson, D. F., Chapman, S. T. and Smith, W. W., ‘Rational elasticity of factorizations in Krull domains’, Proc. Amer. Math. Soc. 117 (1993), 3743.CrossRefGoogle Scholar
[2]Anderson, D. F. and Pruis, P., ‘Length functions on integral domains’, Proc. Amer. Math. Soc. 113 (1991), 933937.CrossRefGoogle Scholar
[3]Carlitz, L., ‘A characterization of algebraic number fields with class number two’, Proc. Amer. Math. Soc. 11 (1960), 391392.Google Scholar
[4]Chapman, S. T., On the Davenport constant, the cross number and their application in factorization theory, Lecture Notes in Pure and Appl. Math. 171 (Marcel Dekker, New York, 1995) pp. 167190.Google Scholar
[5]Chapman, S. T., Krause, U. and Oeljeklaus, E., ‘Monoids determined by a homogeneous linear Diophantine equation and the half-factorial property’, J. Pure Appl. Algebra 151 (2000), 107133.CrossRefGoogle Scholar
[6]Chapman, S. T. and Smith, W. W., ‘An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains’, J. Algebra 159 (1993), 176190.CrossRefGoogle Scholar
[7]Geroldinger, A., ‘Über nicht-eindeutige Zerlegunen in irreduzible Elements’, Math. Z. 197 (1988), 505529.CrossRefGoogle Scholar
[8]Geroldinger, A. and Gao, W., ‘Half-factorial domains and half-factorial subsets of abelian groups’, Houston J. Math. 24 (1998), 593611.Google Scholar
[9]Geroldinger, A. and Halter-Koch, F., ‘Non-unique factorizations in block semigroups and arithmetical applications’, Math. Slovaca 42 (1992), 641661.Google Scholar
[10]Geroldinger, A. and Halter-Koch, F., ‘On the asymptotic behaviour of lengths of factorizations’, J. Pure Appl. Algebra 77 (1992), 239252.CrossRefGoogle Scholar
[11]Halter-Koch, F., ‘Halbgruppen mit Divisorentheorie’, Exposition Math. 8 (1990), 2766.Google Scholar
[12]Krause, U., ‘A characterization of algebraic number fields with cyclic class group of prime power order’, Math. Z. 186 (1984), 143148.CrossRefGoogle Scholar
[13]Rosales, J. C., García-Sánchez, P. A. and García-García, J. I., ‘Atomic commutative monoids and their elasticity’, preprint.Google Scholar
[14]Rosales, J. C., García-Sánchez, P. A. and García-García, J. I., ‘Finitely generated commutative monoids (Nova Science Publishers, New York, 1999).Google Scholar
[15]Skula, L., ‘On c-semigroups’, ACTA Arith. 31 (1976), 247257.CrossRefGoogle Scholar
[16]Zaks, A., ‘Half-factorial domains’, Bull. Amer. Math. Soc. 82 (1976), 721723.CrossRefGoogle Scholar
[17]Zaks, A., ‘Half-factorial domains’, Israel J. Math. 37 (1980), 281302.CrossRefGoogle Scholar