Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:59:44.112Z Has data issue: false hasContentIssue false

FINSLER METRIZABLE ISOTROPIC SPRAYS AND HILBERT’S FOURTH PROBLEM

Published online by Cambridge University Press:  20 May 2014

IOAN BUCATARU*
Affiliation:
Faculty of Mathematics, Alexandru Ioan Cuza University, Iaşi, Romania email bucataru@uaic.ro
ZOLTÁN MUZSNAY
Affiliation:
Institute of Mathematics, University of Debrecen, Debrecen, Hungary email muzsnay@science.unideb.hu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that a system of homogeneous second-order ordinary differential equations (spray) is necessarily isotropic in order to be metrizable by a Finsler function of scalar flag curvature. In our main result we show that the isotropy condition, together with three other conditions on the Jacobi endomorphism, characterize sprays that are metrizable by Finsler functions of scalar flag curvature. We call these conditions the scalar flag curvature (SFC) test. The proof of the main result provides an algorithm to construct the Finsler function of scalar flag curvature, in the case when a given spray is metrizable. Hilbert’s fourth problem asks to determine the Finsler functions with rectilinear geodesics. A Finsler function that is a solution to Hilbert’s fourth problem is necessarily of constant or scalar flag curvature. Therefore, we can use the constant flag curvature (CFC) test, which we developed in our previous paper, Bucataru and Muzsnay [‘Sprays metrizable by Finsler functions of constant flag curvature’, Differential Geom. Appl.31 (3)(2013), 405–415] as well as the SFC test to decide whether or not the projective deformations of a flat spray, which are isotropic, are metrizable by Finsler functions of constant or scalar flag curvature. We show how to use the algorithms provided by the CFC and SFC tests to construct solutions to Hilbert’s fourth problem.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Álvarez Paiva, J. C., ‘Symplectic geometry and Hilbert’s fourth problem’, J. Differential Geom. 69 (2005), 353378.Google Scholar
Álvarez Paiva, J. C., 2013 Asymmetry in Hilbert’s fourth problem. arXiv:1301.2524.Google Scholar
Anderson, I. and Thompson, G., ‘The inverse problem of the calculus of variations for ordinary differential equations’, Mem. Amer. Math. Soc. 98 (1992), 1110.Google Scholar
Antonelli, P. L., Ingarden, R. S. and Matsumoto, M., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology (Kluwer, Dordrecht, 1993).Google Scholar
Bao, D., Chern, S.-S. and Shen, Z., An introduction to Riemann–Finsler geometry (Springer, New York, 2000).Google Scholar
Bao, D. and Robles, C., ‘Ricci and flag curvatures in Finsler geometry’, in: A Sampler of Riemann–Finsler Geometry, Mathematical Sciences Research Institute Publications, 50 (ed. Bao, D.) (Cambridge University Press, Cambridge, 2004), 197259.Google Scholar
Berwald, L., ‘On Finsler and Cartan geometries. III: two-dimensional Finsler spaces with rectilinear extremals’, Ann. Math. 42 (1941), 84112.Google Scholar
Bryant, R. L., ‘Some remarks on Finsler manifolds with constant flag curvature’, Houston J. Math. 28 (2002), 221262.Google Scholar
Bucataru, I., Constantinescu, O. and Dahl, M. F., ‘A geometric setting for systems of ordinary differential equations’, Int. J. Geom. Methods Mod. Phys. 8 (2011), 12911327.Google Scholar
Bucataru, I. and Dahl, M. F., ‘Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations’, J. Geom. Mech. 1 (2009), 159180.Google Scholar
Bucataru, I. and Muzsnay, Z., ‘Projective metrizability and formal integrability’, SIGMA 7 (2011), 114, 22 pages.Google Scholar
Bucataru, I. and Muzsnay, Z., ‘Projective and Finsler metrizability: parametrization rigidity of geodesics’, Int. J. Math. 23 (2012), 1250099.Google Scholar
Bucataru, I. and Muzsnay, Z., ‘Sprays metrizable by Finsler functions of constant flag curvature’, Differential Geom. Appl. 31 (2013), 405415.Google Scholar
Casey, S., Dunajski, M. and Tod, P., ‘Twistor geometry of a pair of second order ODEs’, Comm. Math. Phys. 321 (2013), 681701.Google Scholar
Crampin, M., ‘Isotropic and R-flat sprays’, Houston J. Math. 33 (2007), 451459.Google Scholar
Crampin, M., ‘Some remarks on the Finslerian version of Hilbert’s fourth problem’, Houston J. Math. 37 (2011), 369391.Google Scholar
Crampin, M., Mestdag, T. and Saunders, D. J., ‘Hilbert forms for a Finsler metrizable projective class of sprays’, Differential Geom. Appl. 31 (2013), 6379.Google Scholar
Crampin, M., Sarlet, W., Martínez, E., Byrnes, G. B. and Prince, G. E., ‘Towards a geometrical understanding of Douglas’ solution of the inverse problem of the calculus of variations’, Inv. Prob. 10 (1994), 245260.Google Scholar
Douglas, J., ‘Solution to the inverse problem of the calculus of variations’, Trans. Amer. Math. Soc. 50 (1941), 71128.Google Scholar
Grifone, J., ‘Structure presque-tangente et connexions. I’, Ann. Inst. Henri Poincare 22 (1972), 287334.Google Scholar
Grifone, J. and Muzsnay, Z., Variational Principles for Second-order Differential Equations (World Scientific, Singapore, 2000).Google Scholar
Javaloyes, M. A. and Sánchez, M., ‘On the definition and examples of Finsler metrics’, Ann. Sc. Norm. Sup. Pisa. doi:10.2422/2036-2145.201203-002, arXiv:1111.5066.Google Scholar
Kolar, I., Michor, P. W. and Slovak, J., Natural Operations in Differential Geometry (Springer-Verlag, Berlin, 1993).Google Scholar
Krupka, D. and Sattarov, A. E., ‘The inverse problem of the calculus of variations for Finsler structures’, Math. Slovaca 35 (1985), 217222.Google Scholar
Krupková, O., The Geometry of Ordinary Variational Equations, Lecture Notes in Mathematics 1678 (Springer-Verlag, Berlin, 1997).Google Scholar
Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G. and Rubano, C., ‘The inverse problem in the calculus of variations and the geometry of the tangent bundle’, Phys. Rep. 188 (1990), 147284.Google Scholar
Muzsnay, Z., ‘The Euler–Lagrange PDE and Finsler metrizability’, Houston J. Math. 32 (2006), 7998.Google Scholar
Sarlet, W., Thompson, G. and Prince, G. E., ‘The inverse problem of the calculus of variations: the use of geometrical calculus in Douglas’s analysis’, Trans. Amer. Math. Soc. 354 (2002), 28972919.Google Scholar
Shen, Z., Differential Geometry of Spray and Finsler Spaces (Springer, New York, 2001).CrossRefGoogle Scholar
Shen, Z., ‘Projectively flat Finsler metrics of constant flag curvature’, Trans. Amer. Math. Soc. 355 (2003), 17131728.Google Scholar
Szilasi, J., ‘A setting for spray and Finsler geometry’, in: Handbook of Finsler Geometry, 2 (ed. Antonelli, P. L.) (Kluwer, Dordrecht, 2003), 11831426.Google Scholar
Szilasi, J. and Vattamány, S., ‘On the Finsler-metrizabilities of spray manifolds’, Period. Math. Hungar. 44 (2002), 81100.Google Scholar