Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:42:56.119Z Has data issue: false hasContentIssue false

Daisy structure in Desarguesian projective planes

Published online by Cambridge University Press:  09 April 2009

M. Gabriela Araujo Pardo
Affiliation:
Instituto de Matemáticas, UNAM Circuito Exterior Ciudad UniversitariaMéxico 04510 D.F.México e-mail: garaujo@math.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We distribute the points and lines of PG(2, 2n+1) according to a special structure that we call the daisy structure. This distribution is intimately related to a special block design which turns out to be isomorphic to PG(n, 2).

We show a blocking set of 3q points in PG(2, 2n+1)that intersects each line in at least two points and we apply this to find a lower bound for the heterochromatic number of the projective plane.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Anderson, I., Combinatorial designs. Construction methods (Ellis Horwood, Chinchester, 1990).Google Scholar
[2]Araujo, G., La Margarita. Un estudio acerca de la estructura y la distribución de las rectas de los Planos Proyectivos Algebraicos PG(2, 2n) (Ph.D. Thesis, Facultad de Ciencias, UNAM, 2000).Google Scholar
[3]Arocha, J. L., Bracho, J. and Nemann-Lara, V., ‘On the minimum size of tight hypergraphs’, J. Graph Theory 16 (1992), 319326.CrossRefGoogle Scholar
[4]Arocha, J. L., Bracho, J. and Nemann-Lara, V., ‘Tight and untight triangulated sutrfaces’, J. Combin. Theory Ser. B 63 (1995), 319326.Google Scholar
[5]Batten, L. M., Combinatorics of finite geometries (Cambridge University Press, Cambridge, 1986).Google Scholar
[6]Bruen, A. A., ‘Blocking sets in finite projective planes’, SIAM J. Appl. Math 21 (1971), 380392.CrossRefGoogle Scholar
[7]Bruen, A. A. and Thas, J. A., ‘Blocking sets’, in: Geometriae dedicata, 6 (Reidel, Dordrecht, 1977) pp. 193203.Google Scholar
[8]Buekenhout, F., Handbook of incidence geometry (Université Libre de Bruxelles, Belgium, 1995).Google Scholar
[9]Hirschfeld, J. W. P., Projective geometries over finite fields (Clarendon Press, Oxford, 1979).Google Scholar
[10]Lidl, R. and Niederreiter, H., Finite fields, Encyclopedia Math. Appl. 20 (Cambridge Press, Cambridge, 1977).Google Scholar
[11]Ryser, H. J., Combinatorial Mathematics, 14 (Quinn & Boden Company, New Jersey, 1963).CrossRefGoogle Scholar
[12]Wallis, W. D., Combinatorial designs (Dekker, 1988).Google Scholar