Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:46:07.748Z Has data issue: false hasContentIssue false

Cp-classes of operators in C*-algebras

Published online by Cambridge University Press:  09 April 2009

S. Giotopoulos
Affiliation:
Section of Mathematical Analysis and its Application, Department of Mathematics, University of Athens, Panepistemiopolis, 157 81 Athens, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct a suitable representation of a C*-algebra that carries single elements to rank one operators. We also prove an abstract spectral theorem for compact elements in the algebra. This leads naturally to an abstract definition of Cp-classes of compact elements in the algebra.

Type
Research Article
Copyright
Copyright Australian Mathematical Society 1986

References

1Arveson, W., An invitation to C*-algebra (Springer-Verlag, Berlin 1976).CrossRefGoogle Scholar
2Bonsal, F. F. and Duncan, J., Complete normed algebras (Springer-Verlag, Berlin 1973).CrossRefGoogle Scholar
3Dixmier, J., Les C*-algbres et leurs reprsentations (Gauthier-Villars, Paris, 1964).Google Scholar
4Dunford, N. and Schwartz, J., Linear operators, Part II (Interscience Publishers, a division of John Wiley & Sons, Inc. New York, 1963).Google Scholar
5Erdos, J. A., On certain elements of C*-algebras, Illinois J. Math. 15 (1971), 682693.CrossRefGoogle Scholar
6Erdos, J. A., Giotopoulos, S. and Lambrou, M., Rank one elements of Banach algebras, Mathematica 24 (1977), 178181.Google Scholar
7McCarthy, Ch. A., Cp, Israel J. Math. 5 (1967), 249271.CrossRefGoogle Scholar
8Pak-Ken-Wong, , The p-class in a dual B*-algebra, Trans. Amer. Math. Soc. 200 (1974), 355368.Google Scholar
9Rickart, C. E., General theory of Banach algebras (Van Nostrand, New Jersey 1960).Google Scholar
10Ringrose, J., Compact non-selfadjoint operators (Van Nostrand, 1970).Google Scholar
11Von Neumann, J. and Schatten, R., The cross-space of linear transformations III, Ann. of Math. (2) 49 (1948), 557582.Google Scholar
12Ylinen, K., A note on the compact elements of C*-algebras, Proc. Amer. Math. Soc. 35 (1972), 305306.Google Scholar