Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:38:05.400Z Has data issue: false hasContentIssue false

AUTOMORPHISMS AND SYMPLECTIC LEAVES OF CALOGERO–MOSER SPACES

Published online by Cambridge University Press:  17 October 2022

CÉDRIC BONNAFÉ*
Affiliation:
IMAG, Université de Montpellier, CNRS, Montpellier, France

Abstract

We study the symplectic leaves of the subvariety of fixed points of an automorphism of a Calogero–Moser space induced by an element of finite order of the normalizer of the associated complex reflection group. We give a parametrization à la Harish-Chandra of its symplectic leaves (generalizing earlier works of Bellamy and Losev). This result is inspired by the mysterious relations between the geometry of Calogero–Moser spaces and unipotent representations of finite reductive groups, which is the theme of another paper, C. Bonnafé [‘Calogero–Moser spaces vs unipotent representations’, Pure Appl. Math. Q., to appear, Preprint, 2021, arXiv:2112.13684].

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is partly supported by the ANR: Projects Nos. ANR-16-CE40-0010-01 (GeRepMod) and ANR-18-CE40-0024-02 (CATORE).

Communicated by Benjamin Martin

References

Bellamy, G. and Chalykh, O., ‘Motivic invariants of Calogero–Moser spaces’, in preparation.Google Scholar
Bellamy, G., ‘Cuspidal representations of rational Cherednik algebras at $t=0$ ’, Math. Z. 269 (2011), 609627.10.1007/s00209-010-0754-xCrossRefGoogle Scholar
Bellamy, G., ‘Counting resolutions of symplectic quotient singularities’, Compos. Math. 152 (2016), 99114.10.1112/S0010437X15007630CrossRefGoogle Scholar
Bellamy, G., Maksimau, R. and Schedler, T., in preparation.Google Scholar
Bellamy, G. and Thiel, U., ‘Cuspidal Calogero–Moser and Lusztig families for Coxeter groups’, J. Algebra 462 (2016), 197252.CrossRefGoogle Scholar
Broué, M., Malle, G. and Michel, J., ‘Generic blocks of finite reductive groups’, in: Représentations Unipotentes Génériques et Blocs des Groupes Réductifs Finis, Astérisque, 212 (1993), 792.Google Scholar
Bonnafé, C. and Maksimau, R., ‘Fixed points in smooth Calogero–Moser spaces’, Ann. Inst. Fourier (Grenoble) 71 (2021), 643678.10.5802/aif.3404CrossRefGoogle Scholar
Bonnafé, C., ‘On the Calogero–Moser space associated with dihedral groups II: The equal parameter case’, Preprint, 2022, arXiv:2112.12401.Google Scholar
Bonnafé, C., ‘Calogero–Moser spaces vs unipotent representations’, Pure Appl. Math. Q., to appear, Preprint, 2021, arXiv:2112.13684.Google Scholar
Bonnafé, C. and Rouquier, R., ‘Cherednik algebras and Calogero–Moser cells’, Preprint, 2022, arXiv:1708.09764.Google Scholar
Bonnafé, C. and Thiel, U., ‘Computational aspects of Calogero–Moser spaces’, Preprint, 2022, arXiv:2112.15495.Google Scholar
Brown, K. and Gordon, I., ‘Poisson orders, symplectic reflection algebras and representation theory’, J. reine angew. Math. 559 (2003), 193216.Google Scholar
Dixmier, J., Enveloping Algebras, North-Holland Mathematical Library, 14 (North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977), xvi + 375pages.Google Scholar
Etingof, P. and Ginzburg, V., ‘Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism’, Invent. Math. 147 (2002), 243348.CrossRefGoogle Scholar
Ginzburg, V. and Kaledin, D., ‘Poisson deformations of symplectic quotient singularities’, Adv. Math. 186 (2004), 157.CrossRefGoogle Scholar
Gordon, I., ‘Baby Verma modules for rational Cherednik algebras’, Bull. Lond. Math. Soc. 35 (2003), 321336.CrossRefGoogle Scholar
Greco, S. and Salmon, P., Topics in $m$ -adic Topology, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 58 (Springer-Verlag, Berlin, 1971), vii + 74pages.Google Scholar
Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics, 52 (Springer-Verlag, New York, 1977), xvi + 496 pages.CrossRefGoogle Scholar
Kaledin, D., ‘Normalization of a Poisson algebra is Poisson’, Proc. Steklov Inst. Math. 264 (2009), 7073.CrossRefGoogle Scholar
Lam, T. Y., A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131 (Springer-Verlag, New York, 1991), xvi + 397 pages.Google Scholar
Lehrer, G. I. and Springer, T. A., ‘Intersection multiplicities and reflection subquotients of unitary reflection groups I’, in: Geometric Group Theory Down Under (Canberra, 1996) (de Gruyter, Berlin, 1999), 181193.Google Scholar
Losev, I., ‘Completions of symplectic reflection algebras’, Selecta Math. (N.S.) 18 (2012), 179251.CrossRefGoogle Scholar
Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997), 235265.10.1006/jsco.1996.0125CrossRefGoogle Scholar
Martino, M., ‘The associated variety of a Poisson prime ideal’, J. Lond. Math. Soc. (2) 72 (2005), 110120.10.1112/S002461070500668XCrossRefGoogle Scholar
Martino, M., ‘Symplectic reflection algebras and Poisson geometry’, PhD Thesis, University of Glasgow, 2006.Google Scholar
Namikawa, Y., ‘Poisson deformations of affine symplectic varieties’, Duke Math. J. 156 (2011), 5185.CrossRefGoogle Scholar
Namikawa, Y., ‘Poisson deformations of affine symplectic varieties, II’, Kyoto J. Math. 50 (2010), 727752.CrossRefGoogle Scholar
Shephard, G. C. and Todd, J. A., ‘Finite unitary reflection groups’, Canad. J. Math. 6 (1954), 274304.CrossRefGoogle Scholar
Springer, T. A., ‘Regular elements of finite reflection groups’, Invent. Math. 25 (1974), 159198.10.1007/BF01390173CrossRefGoogle Scholar
Thiel, U., ‘Champ: a Cherednik algebra Magma package’, LMS J. Comput. Math. 18 (2015), 266307.CrossRefGoogle Scholar