Hostname: page-component-68c7f8b79f-qcl88 Total loading time: 0 Render date: 2025-12-18T16:07:25.516Z Has data issue: false hasContentIssue false

Structure of shearless turbulent merging

Published online by Cambridge University Press:  10 December 2025

Francisco Antunes Branco
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
Andrea Cimarelli
Affiliation:
DIEF, University of Modena and Reggio Emilia, 41125 Modena, Italy
Carlos Bettencourt da Silva*
Affiliation:
LAETA, IDMEC, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
*
Corresponding author: Carlos Bettencourt da Silva, carlos.silva@tecnico.ulisboa.pt

Abstract

The merging of two turbulent fronts without mean shear is investigated by direct numerical simulations. The turbulent streams are created by prescribing instantaneous velocity fields from precursor simulations of homogeneous isotropic turbulence (HIT) as inlet conditions for spatially evolving turbulent merging. The fronts are initially separated by a distance $H$ and convected with a uniform free stream velocity $U_{\infty }$. The inlet turbulence intensity varies in the range of $0.24 \leqslant u^{\prime}/U_{\infty } \leqslant 0.47$, while the inlet Taylor-scale Reynolds number is in the range of $151 \leqslant \textit{Re}_{\lambda } \leqslant 317$. As the flow develops in the streamwise direction, two distinct regions are identified: (i) an initial linear decay region, where the two turbulent fronts gradually approach each other without noticeable interaction; and (ii) a rapid decay region, where the opposing turbulent fronts influence one another and eventually merge. The flow statistics collapse once the streamwise coordinate is rescaled as $x^{+} = (x/H) (u^{\prime}/U_{\infty })$, suggesting that the merging location is imposed by large scales. An analysis conditioned to the developing turbulent/non-turbulent interfaces (TNTIs) reveals that, within the merging region, conditional mean enstrophy profiles deviate from those observed in ‘classical’ TNTIs, indicating a locally more homogenous flow. Within this region of interaction, the surface area of the TNTI increases while the volume of irrotational fluid steadily decreases, resulting in the generation of fine-scale structures. These findings support that turbulent merging is a multiscale process, where both the largest and smallest scales of motion intervene.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.10.1063/1.870050CrossRefGoogle Scholar
Berstad, F.O,J,, Hearst, R.J. & Neunaber, I., 2025 Wake merging and turbulence transition downstream of side-by-side porous discs. J. Fluid Mech. 1015, A39.10.1017/jfm.2025.10314CrossRefGoogle Scholar
Bilger, R.W. 1979 Turbulent jet diffusion flames. In Energy and Combustion Science, pp. 109131.Google Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.10.1017/S0022112001006759CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.10.1017/S002211207400190XCrossRefGoogle Scholar
Buxton, O.R.H. & Chen, J. 2023 The relative efficiencies of the entrainment of mass, momentum and kinetic energy from a turbulent background. J. Fluid Mech. 977, R2.10.1017/jfm.2023.958CrossRefGoogle Scholar
Catrakis, H.J., Aguirre, R.C. & Ruiz-Plancarte, J. 2002 Area–volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid Mech. 462, 245254.10.1017/S0022112002008911CrossRefGoogle Scholar
Catrakis, H.J. & Dimotakis, P.E. 1996 Mixing in turbulent jets: scalar measures and isosurface geometry. J. Fluid Mech. 317, 369406.10.1017/S002211209600078XCrossRefGoogle Scholar
Chauhan, K., Philip, J., de, Silva, C., M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.10.1017/jfm.2013.641CrossRefGoogle Scholar
Chen, J. & Buxton, O.R.H. 2024 Turbulent/turbulent entrainment in a planar wake. J. Fluid Mech. 1000A26.10.1017/jfm.2024.822CrossRefGoogle Scholar
Cimarelli, A., Cocconi, G., Frohnapfel, B. & De Angelis, E. 2015 Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface. Phys. Fluids 27 (12), 125106.10.1063/1.4937433CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 The free-stream boundaries of turbulent flows. NACA TN-3133 10331064.Google Scholar
Dahm, W.J.A. & Dimotakis, P.E. 1990 Mixing at large Schmidt number in the self-similar far field of turbulent jets. J. Fluid Mech. 217, 299330.10.1017/S0022112090000738CrossRefGoogle Scholar
Donzis, D.A., Sreenivasan, K.R. & Yeung, P.K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.10.1017/S0022112005004039CrossRefGoogle Scholar
Dyn, N., Hormann, K., Kim, S. & Levin, D. 2001 Optimizing 3D Triangulations Using Discrete Curvature Analysis. Vanderbilt University, 135146.Google Scholar
Guimarães, M.C., Pinho, F.T. & da Silva, C.B. 2022 Turbulent planar wakes of viscoelastic fluids analysed by direct numerical simulations. J. Fluid Mech. 946, A26.10.1017/jfm.2022.559CrossRefGoogle Scholar
Harima, T., Fujita, S. & Osaka, H. 2005 Turbulent properties of twin circular free jets with various nozzle spacing. In Engineering Turbulence Modelling and Experiments (ed. W. Rodi & M. Mulas), vol. 6, pp. 501510, Elsevier Science B.V.10.1016/B978-008044544-1/50048-0CrossRefGoogle Scholar
Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W. & Tsinober, A. 2007 Small-scale aspects of flows in proximity of the turbulent/nonturbulent interface. Phys. Fluids 19 (7), 071702.10.1063/1.2746037CrossRefGoogle Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106, 134503.10.1103/PhysRevLett.106.134503CrossRefGoogle ScholarPubMed
Hopfinger, E.J. & Toly, J.-A. 1976 Spatially decaying turbulence and its relation to mixing across density interfaces. J. Fluid Mech. 78 (1), 155175.10.1017/S0022112076002371CrossRefGoogle Scholar
Hunt, J.C.R., Eames, I. & Westerweel, J. 2006 Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 499519.10.1017/S002211200600944XCrossRefGoogle Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.10.1017/S002211209400323XCrossRefGoogle Scholar
Kankanwadi, K.S. & Buxton, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech. 905, A35.10.1017/jfm.2020.755CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59 (2), 308323.10.1016/0021-9991(85)90148-2CrossRefGoogle Scholar
Krogstad, P.-Å. & Davidson, P.A. 2011 Freely decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680, 417434.10.1017/jfm.2011.169CrossRefGoogle Scholar
Laban, A., Aleyasin, S.S., Tachie, M.F. & Koupriyanov, M. 2019 Experimental investigation of nozzle spacing effects on characteristics of round twin free jets. J. Fluids Engine. 141 (7), 071201.10.1115/1.4041989CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.10.1016/0021-9991(92)90324-RCrossRefGoogle Scholar
Mathew, J. & Basu, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.10.1063/1.1480831CrossRefGoogle Scholar
Miller, D.R. & Comings, E.W. 1960 Force-momentum fields in a dual-jet flow. J. Fluid Mech. 7 (2), 237256.10.1017/S0022112060001468CrossRefGoogle Scholar
Mistry, D., Philip, J., Dawson, J.R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.10.1017/jfm.2016.474CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.10.1146/annurev.fluid.30.1.539CrossRefGoogle Scholar
Moser, R.D., Rogers, M.M. & Ewing, D.W. 1998 Self-similarity of time-evolving plane wakes. J. Fluid Mech. 367, 255289.10.1017/S0022112098001426CrossRefGoogle Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.10.1016/0021-9991(76)90023-1CrossRefGoogle Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.10.1017/jfm.2013.613CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics, vol. 10, 2nd edn. Springer Cham.10.1007/978-3-319-73162-9CrossRefGoogle Scholar
Schanderl, W., Jenssen, U., Strobl, C. & Manhart, M. 2017 The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. J. Fluid Mech. 827, 285321.10.1017/jfm.2017.486CrossRefGoogle Scholar
da, Silva, Carlos, B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.Google Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.10.1063/1.2912513CrossRefGoogle Scholar
Silva, T.S., Zecchetto, M. & da Silva, C.B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech. 843, 156179.10.1017/jfm.2018.143CrossRefGoogle Scholar
Taddesse, T.M. & Mathew, J. 2022 Development and scaling of turbulent, twin round jets. J. Fluid Mech. 939, A13.10.1017/jfm.2022.193CrossRefGoogle Scholar
Taveira, R.R. & da Silva, C.B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.10.1063/1.4866456CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. Math. Phys. Engng. Sci. 164 (919), 476490.Google Scholar
Thompson, S.M. & Turner, J.S. 1975 Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech. 67 (2), 349368.10.1017/S0022112075000341CrossRefGoogle Scholar
Tordella, D. & Iovieno, M. 2006 Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion. J. Fluid Mech. 549, 429441.10.1017/S0022112005007688CrossRefGoogle Scholar
Tordella, D. & Iovieno, M. 2011 Small-scale anisotropy in turbulent shearless mixing. Phys. Rev. Lett. 107, 194501.10.1103/PhysRevLett.107.194501CrossRefGoogle ScholarPubMed
Turner, J.S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.10.1017/S0022112086001222CrossRefGoogle Scholar
Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J. Fluid Mech. 207, 191229.10.1017/S0022112089002557CrossRefGoogle Scholar
Villermaux, E. & Innocenti, C. 1999 On the geometry of turbulent mixing. J. Fluid Mech. 393, 123147.10.1017/S0022112099005674CrossRefGoogle Scholar
Villermaux, E. & Rehab, H. 2000 Mixing in coaxial jets. J. Fluid Mech. 425, 161185.10.1017/S002211200000210XCrossRefGoogle Scholar
Wang, H.P., Olson, S.J., Goldstein, R.J. & Eckert, E.R.G. 1997 Flow visualization in a linear turbine cascade of high performance turbine blades. J. Turbomachin. 119 (1), 18.10.1115/1.2841006CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B. & Nagata, K. 2019 Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence. J. Fluid Mech. 875, 321344.10.1017/jfm.2019.462CrossRefGoogle Scholar
Watanabe, T., Riley, J.J. & Nagata, K. 2017 Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers. Phys. Rev. Fluids 2, 104803.10.1103/PhysRevFluids.2.104803CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2015 Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8), 085109.10.1063/1.4928199CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501.10.1103/PhysRevLett.95.174501CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.10.1017/S0022112009006600CrossRefGoogle Scholar
Williamson, J.H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.10.1016/0021-9991(80)90033-9CrossRefGoogle Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.10.1063/1.4761837CrossRefGoogle Scholar
Xavier, R.P., Teixeira, M.A.C. & da Silva, C.B. 2021 Asymptotic scaling laws for the irrotational motions bordering a turbulent region. J. Fluid Mech. 918, A3.10.1017/jfm.2021.296CrossRefGoogle Scholar
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.10.1017/jfm.2021.168CrossRefGoogle Scholar
Zong, H. & Porté-Agel, F. 2020 A momentum-conserving wake superposition method for wind farm power prediction. J. Fluid Mech. 889, A8.10.1017/jfm.2020.77CrossRefGoogle Scholar