Hostname: page-component-857557d7f7-zv5th Total loading time: 0 Render date: 2025-11-26T05:47:59.582Z Has data issue: false hasContentIssue false

Hydrodynamics in a villi-patterned channel due to pendular-wave activity

Published online by Cambridge University Press:  26 November 2025

Rohan Vernekar*
Affiliation:
CNRS, Grenoble INP, LRP, Univ. Grenoble Alpes , Grenoble 38000, France
Faisal Ahmad
Affiliation:
CNRS, Grenoble INP, LRP, Univ. Grenoble Alpes , Grenoble 38000, France CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, Grenoble 38000, France
Martin Garic
Affiliation:
Sorbonne Université, CNRS, Laboratoire Jean Perrin, LJP, F-75005 Paris, France Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F75005 Paris, France
Dácil Idaira Yánez Martín
Affiliation:
CNRS, Grenoble INP, LRP, Univ. Grenoble Alpes , Grenoble 38000, France CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, Grenoble 38000, France
Claude Loverdo
Affiliation:
Sorbonne Université, CNRS, Laboratoire Jean Perrin, LJP, F-75005 Paris, France Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F75005 Paris, France
Stéphane Tanguy
Affiliation:
CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, Grenoble 38000, France
Clément de Loubens*
Affiliation:
CNRS, Grenoble INP, LRP, Univ. Grenoble Alpes , Grenoble 38000, France
*
Corresponding authors: Clement de Loubens, clement.de-loubens@univ-grenoble-alpes.fr; Rohan Vernekar, rohan.vernekar@orange.fr
Corresponding authors: Clement de Loubens, clement.de-loubens@univ-grenoble-alpes.fr; Rohan Vernekar, rohan.vernekar@orange.fr

Abstract

Inspired by small intestine motility, we investigate the flow induced by a propagating pendular wave along the walls of a channel lined with rigid, villi-like microstructures. The villi undergo harmonic axial oscillations with a phase lag relative to their neighbours, generating travelling patterns of intervillous contraction. Using two-dimensional lattice Boltzmann simulations, we resolve the flow within the villi zone and the lumen, sampling small to moderate Womersley numbers. We uncover a mixing boundary layer (MBL) just above the villi, composed of semi-vortical structures that travel with the imposed wave. In the lumen, an axial steady flow emerges, surprisingly oriented opposite to the wave propagation direction, contrary to canonical peristaltic flows. We attribute this flow reversal to the non-reciprocal trajectories of fluid trapped between adjacent villi and derive a geometric scaling law that captures its magnitude in the Stokes regime. The MBL thickness is found to depend solely on the wave kinematics given by intervillous phase lag in the low-inertia limit. Above a critical threshold, oscillatory inertia induces dynamic confinement, limiting the radial extent of the MBL and leading to non-monotonic behaviour of the axial steady flux. We further develop an effective boundary condition at the villus tips, incorporating both steady and oscillatory components across relevant spatial scales. This framework enables coarse-grained simulations of intestinal flows without resolving individual villi. Our results shed light on the interplay among active microstructure, pendular wave and finite inertia in biological flows, and suggests new avenues for flow control in biomimetic and microfluidic systems.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agbesi, A., Richard, J. & Chevalier, N.R. 2022 Flow and mixing induced by single, colinear, and colliding contractile waves in the intestine. Phys. Rev. Fluids 7 (4), 043101.10.1103/PhysRevFluids.7.043101CrossRefGoogle Scholar
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9 (1), 339398.10.1146/annurev.fl.09.010177.002011CrossRefGoogle Scholar
Button, B., Cai, L.-H., Ehre, C., Kesimer, M., Hill, D.B., Sheehan, J.K., Boucher, R.C.Rubinstein, M. 2012 A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337 (6097), 937941.10.1126/science.1223012CrossRefGoogle ScholarPubMed
Casselbrant, A. & Helander, H.F. 2022 Asymmetric mucosal structure, mesenteric versus antimesenteric, in mouse, rat, and human small intestines. Physiol. Rep. 10 (24), e15547.10.14814/phy2.15547CrossRefGoogle ScholarPubMed
Chen, L., Yu, Y., Lu, J. & Hou, G. 2014 A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. Intl J. Numer. Meth. Flow 74 (6), 439467.10.1002/fld.3858CrossRefGoogle Scholar
Choudhury, A., Filoche, M., Ribe, N.M., Grenier, N. & Dietze, G.F. 2023 On the role of viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach. J. Fluid Mech. 971, A33.10.1017/jfm.2023.682CrossRefGoogle Scholar
Costalonga, M., Brunet, P. & Peerhossaini, H. 2015 Low frequency vibration induced streaming in a Hele-Shaw cell. Phys. Fluids 27 (1), 013101.10.1063/1.4905031CrossRefGoogle Scholar
Creff, J., Malaquin, L. & Besson, A. 2021 In vitro models of intestinal epithelium: toward bioengineered systems. J. Tissue Engng. 12, 2041731420985202.10.1177/2041731420985202CrossRefGoogle ScholarPubMed
Cui, S., Bhosale, Y. & Gazzola, M. 2024 Three-dimensional soft streaming. J. Fluid Mech. 979, A7.10.1017/jfm.2023.1050CrossRefGoogle Scholar
Dauptain, A., Favier, J. & Bottaro, A. 2008 Hydrodynamics of ciliary propulsion. J. Fluid. Struct. 24 (8), 11561165.10.1016/j.jfluidstructs.2008.06.007CrossRefGoogle Scholar
Ding, Y., Nawroth, J.C., McFall-Ngai, M.J. & Kanso, E. 2014 Mixing and transport by ciliary carpets: a numerical study. J. Fluid Mech. 743, 124140.10.1017/jfm.2014.36CrossRefGoogle Scholar
Elgeti, J. & Gompper, G. 2013 Emergence of metachronal waves in cilia arrays. Proc. Natl Acad. Sci. 110 (12), 44704475.10.1073/pnas.1218869110CrossRefGoogle ScholarPubMed
Esser, F., Masselter, T. & Speck, T. 2019 Silent pumpers: a comparative topical overview of the peristaltic pumping principle in living nature, engineering, and biomimetics. Adv. Intell. Syst. 1 (2), 1900009.10.1002/aisy.201900009CrossRefGoogle Scholar
Fishman, A., Rossiter, J.M., Leontini, J.S. & Homer, M.E. 2022 Mixing in arrays of villi-like actuators. Phys. Fluids 34 (9), 094112.10.1063/5.0099148CrossRefGoogle Scholar
Fullard, L., Lammers, W., Wake, G.C. & Ferrua, M.J. 2014 Propagating longitudinal contractions in the ileum of the rabbit – efficiency of advective mixing. Food Funct. 5 (11), 27312742.10.1039/C4FO00487FCrossRefGoogle ScholarPubMed
Garic, M., Vernekar, R., Martín, D.I.Y., Tanguy, S., de Loubens, C. & Loverdo, C. 2025 Intestinal villi and crypts density maximizing nutrient absorption. arXiv: 2507.03472.Google Scholar
Ginzburg, I. 2025 The lattice Boltzmann method with deformable boundary for colonic flow due to segmental circular contractions. Fluids 10 (2), 22.10.3390/fluids10020022CrossRefGoogle Scholar
Ginzburg, I., Silva, G., Marson, F., Chopard, B. & Latt, J. 2023 Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows. Phys. Rev. E 107 (2), 025303.10.1103/PhysRevE.107.025303CrossRefGoogle ScholarPubMed
Ginzburg, I., Verhaeghe, F. & d’Humieres, D. 2008 Two-relaxation-time Lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3 (2), 427478.Google Scholar
Hall, J. & Clarke, N. 2020 The mechanics of cilium beating: quantifying the relationship between metachronal wavelength and fluid flow rate. J. Fluid Mech. 891, A20.10.1017/jfm.2020.161CrossRefGoogle Scholar
Hardacre, A.K., Lentle, R.G., Yap, S.-Y. & Monro, J.A. 2018 Predicting the viscosity of digesta from the physical characteristics of particle suspensions using existing rheological models. J. R. Soc. Interface 15 (142), 20180092.10.1098/rsif.2018.0092CrossRefGoogle ScholarPubMed
He, X. & Luo, L.-S. 1997 a Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88 (3), 927944.10.1023/B:JOSS.0000015179.12689.e4CrossRefGoogle Scholar
He, X. & Luo, L.-S. 1997 b Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (6), 68116817.10.1103/PhysRevE.56.6811CrossRefGoogle Scholar
Hosoyamada, Y. & Sakai, T. 2005 Structural and mechanical architecture of the intestinal villi and crypts in the rat intestine: integrative reevaluation from ultrastructural analysis. Anatomy Embryol. 210 (1), 112.10.1007/s00429-005-0011-yCrossRefGoogle ScholarPubMed
Ishikawa, T. 2024 Fluid dynamics of squirmers and ciliated microorganisms. Annu. Rev. Fluid Mech. 56 (2024), 119145.10.1146/annurev-fluid-121021-042929CrossRefGoogle Scholar
Jaffrin, M.Y. & Shapiro, A.H. 1971 Peristaltic pumping. Annu. Rev. Fluid Mech. 3 (1), 1337.10.1146/annurev.fl.03.010171.000305CrossRefGoogle Scholar
Khaderi, S.N., den Toonder, J.M.J. & Onck, P.R. 2011 Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis. J. Fluid Mech. 688, 4465.10.1017/jfm.2011.355CrossRefGoogle Scholar
Kotas, C.W., Yoda, M. & Rogers, P.H. 2007 Visualization of steady streaming near oscillating spheroids. Exp. Fluids 42 (1), 111121.10.1007/s00348-006-0224-8CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method, vol. 10. Springer.10.1007/978-3-319-44649-3CrossRefGoogle Scholar
Lammers, W.J.E.P. 2005 Spatial and temporal coupling between slow waves and pendular contractions. Am. J. Physiol.-Gastrointestinal Liver Physiol. 289 (5), G898G903.10.1152/ajpgi.00070.2005CrossRefGoogle ScholarPubMed
Laser, D.J. & Santiago, J.G. 2004 A review of micropumps. J. Micromech. Microengng 14 (6), R35.10.1088/0960-1317/14/6/R01CrossRefGoogle Scholar
Lauga, E. 2011 Life around the scallop theorem. Soft Matter 7 (7), 30603065.10.1039/C0SM00953ACrossRefGoogle Scholar
Lentle, R.G., Janssen, P.W.M., de Loubens, C., Lim, Y.F., Hulls, C. & Chambers, P. 2013 Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterol. Motility 25 (11), 881–e700.10.1111/nmo.12203CrossRefGoogle ScholarPubMed
Lentle, R.G., de Loubens, C., Hulls, C., Janssen, P.W.M., Golding, M.D. & Chambers, J.P. 2012 A comparison of the organization of longitudinal and circular contractions during pendular and segmental activity in the duodenum of the rat and guinea pig. Neurogastroenterolo. Motility 24 (7), 686–e298.10.1111/j.1365-2982.2012.01923.xCrossRefGoogle ScholarPubMed
Levitt, M.D., Strocchi, A. & Levitt, D.G. 1992 Human jejunal unstirred layer: evidence for extremely efficient luminal stirring. Am. J. Physiol.-Gastrointestinal Liver Physiol. 262 (3), G593G596.10.1152/ajpgi.1992.262.3.G593CrossRefGoogle ScholarPubMed
Lim, Y.F., de Loubens, C., Love, R.J., Lentle, R.G. & Janssen, P.W.M. 2015 Flow and mixing by small intestine villi. Food Funct. 6 (6), 17871795.10.1039/C5FO00285KCrossRefGoogle ScholarPubMed
Lim, Y.F., Lentle, R.G., Janssen, P.W.M., Williams, M.A.K., de Loubens, C., Mansel, B.W., Chambers, P. & Blachier, F. 2014 Determination of villous rigidity in the distal ileum of the possum (trichosurus vulpecula). PloS One 9 (6), e100140.10.1371/journal.pone.0100140CrossRefGoogle ScholarPubMed
Loiseau, E., Gsell, S., Nommick, A., Jomard, C., Gras, D., Chanez, P., D’Ortona, U., Kodjabachian, L., Favier, J. & Viallat, A. 2020 Active mucus–cilia hydrodynamic coupling drives self-organization of human bronchial epithelium. Nat. Phys. 16 (11), 11581164.10.1038/s41567-020-0980-zCrossRefGoogle Scholar
de Loubens, Cément, Lentle, R.G., Love, R.J., Hulls, C. & Janssen, P.W.M. 2013 Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig. J. R. Soc. Interface 10 (83), 20130027.10.1098/rsif.2013.0027CrossRefGoogle ScholarPubMed
Loudon, C. & Tordesillas, A. 1998 The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191 (1), 6378.10.1006/jtbi.1997.0564CrossRefGoogle ScholarPubMed
Mailman, D., Womack, W.A., Kvietys, P.R. & Granger, D.N. 1990 Villous motility and unstirred water layers in canine intestine. Am. J. Physiol.-Gastrointestinal Liver Physiol. 258 (2), G238G246.10.1152/ajpgi.1990.258.2.G238CrossRefGoogle ScholarPubMed
Marmottant, P. 2024 Large vortices from soft vibrations. J. Fluid Mech. 986, F1.10.1017/jfm.2024.271CrossRefGoogle Scholar
Marshall, W.F. & Kintner, C. 2008 Cilia orientation and the fluid mechanics of development. Curr. Opin. Cell Biol. 20 (1), 4852.10.1016/j.ceb.2007.11.009CrossRefGoogle ScholarPubMed
Marson, F., Thorimbert, Y., Chopard, B., Ginzburg, I. & Latt, J. 2021 Enhanced single-node lattice Boltzmann boundary condition for fluid flows. Phys. Rev. E 103 (5), 053308.10.1103/PhysRevE.103.053308CrossRefGoogle ScholarPubMed
Melville, J., Macagno, E. & Christensen, J. 1975 Longitudinal contractions in the duodenum: their fluid-mechanical function. In American Journal of Physiology-Legacy Content.American Physiological Society.Google Scholar
Najafi, A. & Golestanian, R. 2004 Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 69 (6), 062901.10.1103/PhysRevE.69.062901CrossRefGoogle Scholar
Najafi, A. & Golestanian, R. 2005 Propulsion at low Reynolds number. J. Phys.: Condensed Matter 17 (14), S1203.Google Scholar
Pandey, A., Chen, Z.-Y., Yuk, J., Sun, Y., Roh, C., Takagi, D., Lee, S. & Jung, S. 2023 Optimal free-surface pumping by an undulating carpet. Nat. Commun. 14 (1), 7735.10.1038/s41467-023-43059-8CrossRefGoogle Scholar
Penry, D.L. & Jumars, P.A. 1986 Chemical reactor analysis and optimal digestion. Bioscience 36 (5), 310315.10.2307/1310235CrossRefGoogle Scholar
Penry, D.L. & Jumars, P.A. 1987 Modeling animal guts as chemical reactors. Am. Natural. 129 (1), 6996.10.1086/284623CrossRefGoogle Scholar
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.10.1119/1.10903CrossRefGoogle Scholar
Puthumana Melepattu, M. & de Loubens, C. 2022 Steady streaming flow induced by active biological microstructures; application to small intestine villi. Phys. Fluids 34 (6), 061905.10.1063/5.0094994CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.10.1146/annurev.fluid.33.1.43CrossRefGoogle Scholar
Satir, P. & Christensen, S.T. 2007 Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377400.10.1146/annurev.physiol.69.040705.141236CrossRefGoogle ScholarPubMed
Schlichting, H. 1960 Boundary Layer Theory. McGraw-Hill.Google Scholar
Shah, A.S., Ben-Shahar, Y., Moninger, T.O., Kline, J.N. & Welsh, M.J. 2009 Motile cilia of human airway epithelia are chemosensory. Science 325 (5944), 11311134.10.1126/science.1173869CrossRefGoogle ScholarPubMed
Shapiro, A.H., Jaffrin, M.Y. & Weinberg, S.L. 1969 Peristaltic pumping with long wavelengths at low Reynolds number. J. Fluid Mech. 37 (4), 799825.10.1017/S0022112069000899CrossRefGoogle Scholar
Shields, A.R., Fiser, B.L., Evans, B.A., Falvo, M.R., Washburn, S. & Superfine, R. 2010 Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl Acad. Sci. 107 (36), 1567015675.10.1073/pnas.1005127107CrossRefGoogle ScholarPubMed
Sinnott, M.D., Cleary, P.W. & Harrison, S.M. 2017 Peristaltic transport of a particulate suspension in the small intestine. Appl. Math. Model. 44, 143159.10.1016/j.apm.2017.01.034CrossRefGoogle Scholar
Strocchi, A. & Levitt, M.D. 1993 Role of villous surface area in absorption science versus religion. Digest. Dis. Sci. 38 (3), 385387.10.1007/BF01316488CrossRefGoogle ScholarPubMed
Tabata, O., Hirasawa, H., Aoki, S., Yoshida, R. & Kokufuta, E. 2002 Ciliary motion actuator using self-oscillating gel. Sensors Actuators A: Phys. 95 (2–3), 234238.10.1016/S0924-4247(01)00731-2CrossRefGoogle Scholar
Takagi, D. & Balmforth, N.J. 2011 Peristaltic pumping of viscous fluid in an elastic tube. J. Fluid Mech. 672, 196218.10.1017/S0022112010005914CrossRefGoogle Scholar
Tao, S., Hu, J. & Guo, Z. 2016 An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Comput. Fluids 133, 114.10.1016/j.compfluid.2016.04.009CrossRefGoogle Scholar
Tatsuno, M. 1973 Circulatory streaming around an oscillating circular cylinder at low Reynolds numbers. J. Phys. Soc. Japan 35 (3), 915920.10.1143/JPSJ.35.915CrossRefGoogle Scholar
den Toonder, J., et al. 2008 Artificial cilia for active micro-fluidic mixing. Lab Chip 8 (4), 533541.10.1039/b717681cCrossRefGoogle Scholar
Vernekar, R., Garic, M., de Loubens, C., Loverdo, C. & Tanguy, S. 2025 3dintestinalflow: computational code for simulating intestinal flow with villi-induced motility. HAL archive, hal-05155129, version 1.Google Scholar
Wang, Y. & Brasseur, J.G. 2017 Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions. Phys. Rev. E 95 (6), 062412.10.1103/PhysRevE.95.062412CrossRefGoogle ScholarPubMed
Westergaard, H., Holtermuller, K.H. & Dietschy, J.M. 1986 Measurement of resistance of barriers to solute transport in vivo in rat jejunum. Am. J. Physiol.-Gastrointestinal Liver Physiol. 250 (6), G727G735.10.1152/ajpgi.1986.250.6.G727CrossRefGoogle ScholarPubMed
Zhang, J. 2011 Lattice Boltzmann method for microfluidics: models and applications. Microfluid. Nanofluid. 10 (1), 128.10.1007/s10404-010-0624-1CrossRefGoogle Scholar
Supplementary material: File

Vernekar et al. supplementary movie 1

Video of evolution of instantaneous flow streamlines over one period in the Stokesflow regime at $Wo = 0.16$ , for $\Delta \phi = \pi/2$ and ã = 0.2. The colour-map plots magnitude of instantaneous velocity. The dashed (magenta) line shows the approximateseparation separation between the mixing and advecting layers.
Download Vernekar et al. supplementary movie 1(File)
File 6.2 MB
Supplementary material: File

Vernekar et al. supplementary movie 2

Video of evolution of instantaneous flow streamlines over one period in the Stokesflow regime at $Wo = 0.16$ , for $\Delta \phi = \pi/4$ and ã = 0.2. The colour-map plots magnitude of instantaneous velocity. The dashed (magenta) line shows the approximateseparation separation between the mixing and advecting layers.
Download Vernekar et al. supplementary movie 2(File)
File 6.2 MB
Supplementary material: File

Vernekar et al. supplementary movie 3

Video of evolution of instantaneous flow streamlines over one period in the inertialflow regime at $Wo = 2.82$ , for $\Delta \phi = \pi/2$ and ã = 0.2. The colour-map plots magnitude of instantaneous velocity. The dashed (magenta) line shows the approximate separation separation between the mixing and advecting layers.
Download Vernekar et al. supplementary movie 3(File)
File 4.1 MB
Supplementary material: File

Vernekar et al. supplementary movie 4

Video of evolution of instantaneous flow streamlines over one period in the inertialflow regime at $Wo = 2.82$ , for $\Delta \phi = \pi/4$ and ã = 0.2. The colour-map plots magnitude of instantaneous velocity. The dashed (magenta) line shows the approximate separation separation between the mixing and advecting layers.
Download Vernekar et al. supplementary movie 4(File)
File 4.1 MB
Supplementary material: File

Vernekar et al. supplementary movie 5

Overlay of evolution of the mixing layer height ℓ (marked by the dashed line),with increasing Womersley numbers $Wo = 0.5$ , 0.89, 1.58 and 2.82, for two phaselags $\Delta \phi = \pi/2$ and $\pi/4$ (row-wise), and ã = 0.2. The colour-map plots magnitude of instantaneous velocity. Flow streamlines are plotted over two adjacent villi inthe periodic system at various time fractions t/T (column-wise) in one period.
Download Vernekar et al. supplementary movie 5(File)
File 424.2 KB
Supplementary material: File

Vernekar et al. supplementary movie 6

Video of evolution of instantaneous flow streamlines over one period at $Wo = 5.0$ ,for $\Delta \phi = \pi/5$ and ã = 0.2. The colour-map plots magnitude of instantaneous velocity. Note the hourglass shape for the counter-clockwise (smaller) vortical flow arising from the wall.
Download Vernekar et al. supplementary movie 6(File)
File 3.1 MB
Supplementary material: File

Vernekar et al. supplementary movie 7

Video of evolution of instantaneous flow streamlines over one period at $Wo = 5.0$ ,for $\Delta \phi = \pi/4$ and ã = 0.1. The colour-map plots magnitude of instantaneous velocity. Note the hourglass shape for the counter-clockwise (smaller) vorticalflow arising from the wall.
Download Vernekar et al. supplementary movie 7(File)
File 3.1 MB
Supplementary material: File

Vernekar et al. supplementary material 8

Vernekar et al. supplementary material
Download Vernekar et al. supplementary material 8(File)
File 1.6 MB