Hostname: page-component-857557d7f7-8wkb5 Total loading time: 0 Render date: 2025-11-26T09:10:08.064Z Has data issue: false hasContentIssue false

Flow instability and scaling transition near strongly polarised surfaces

Published online by Cambridge University Press:  26 November 2025

Wei Liu
Affiliation:
Department of Engineering Mechanics and ASP, Tsinghua University , Beijing 100084, PR China
Yunfan Huang
Affiliation:
Department of Engineering Mechanics and ASP, Tsinghua University , Beijing 100084, PR China
Moran Wang*
Affiliation:
Department of Engineering Mechanics and ASP, Tsinghua University , Beijing 100084, PR China
*
Corresponding author: Moran Wang, moralwang@jhu.edu

Abstract

The electrokinetic and unstable behaviour near strongly polarised surfaces cannot be well captured by the canonical asymptotic theory for induced-charge electro-osmosis, and the intrinsic mechanism remains unclear. Using direct numerical simulations and scaling analysis, this paper reveals that, near the strongly polarised surfaces, the strong electric double layer charging induces a strong local electric field, which drives the cations in the electrical double layer to extend to a finite region and form an extended space-charge (ESC) layer. The ESC triggers flow instability near strongly polarised surfaces, causing a transition of the velocity scaling exponent in the electric field dependence from a 2 to a 4/3 power law. The findings and mechanisms pave the way for designs of energy and biomedical systems.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bazant, M.Z. & Squires, T.M. 2004 Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92 (6), 066101.10.1103/PhysRevLett.92.066101CrossRefGoogle ScholarPubMed
Bazant, M.Z. & Squires, T.M. 2010 Induced-charge electrokinetic phenomena. Curr. Opin. Coll. Interface Sci. 15 (3), 203213.10.1016/j.cocis.2010.01.003CrossRefGoogle Scholar
Bazant, M.Z., Thornton, K. & Ajdari, A. 2004 Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E. 70 (2), 021506.10.1103/PhysRevE.70.021506CrossRefGoogle ScholarPubMed
Bazant, M.Z., Storey, B.D. & Kornyshev, A.A. 2011 Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106 (4), 046102.10.1103/PhysRevLett.106.046102CrossRefGoogle ScholarPubMed
Chen, G., Perazzo, A. & Stone, H.A. 2020 Influence of salt on the viscosity of polyelectrolyte solutions. Phys. Rev. Lett. 124 (17), 177801.10.1103/PhysRevLett.124.177801CrossRefGoogle ScholarPubMed
Davidson, S.M., Andersen, M.B. & Mani, A. 2014 Chaotic induced-charge electro-osmosis. Phys. Rev. Lett. 112 (12), 128302.10.1103/PhysRevLett.112.128302CrossRefGoogle ScholarPubMed
Demekhin, E.A., Shelistov, V.S. & Polyanskikh, S.V. 2011 Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. Phys. Rev. E. 84 (3), 036318.10.1103/PhysRevE.84.036318CrossRefGoogle ScholarPubMed
Dukhin, S.S. 1991 Electrokinetic phenomena of the second kind and their applications. Adv. Coll. Interface Sci. 35, 173196.10.1016/0001-8686(91)80022-CCrossRefGoogle Scholar
Gregersen, M.M., Andersen, M.B., Soni, G., Meinhart, C. & Bruus, H. 2009 Numerical analysis of finite debye-length effects in induced-charge electro-osmosis. Phys. Rev. E. 79 (6), 066316.10.1103/PhysRevE.79.066316CrossRefGoogle ScholarPubMed
Gu, Z.B., Xu, B.R., Huo, P., Rubinstein, S.M., Bazant, M.Z. & Deng, D.S. 2019 Deionization shock driven by electroconvection in a circular channel. Phys. Rev. Fluids 4 (11), 113701.10.1103/PhysRevFluids.4.113701CrossRefGoogle Scholar
Guan, Y.F., He, X.R., Wang, Q., Song, Z.W., Zhang, M.Q. & Wu, J. 2021 Monotonic instability and overstability in two-dimensional electrothermohydrodynamic flow. Phys. Rev. Fluids 6 (1), 013702.10.1103/PhysRevFluids.6.013702CrossRefGoogle Scholar
Gupta, A., Rallabandi, B. & Stone, H.A. 2019 Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. Phys. Rev. Fluids 4 (4), 043702.10.1103/PhysRevFluids.4.043702CrossRefGoogle Scholar
Harnett, C.K., Templeton, J., Dunphy-Guzman, K.A., Senousy, Y.M. & Kanouff, M.P. 2008 Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip 8 (4), 565572.10.1039/b717416kCrossRefGoogle ScholarPubMed
Kang, S. & Kwak, R. 2020 Pattern formation of three-dimensional electroconvection on a charge selective surface. Phys. Rev. Lett. 124 (15), 154502.10.1103/PhysRevLett.124.154502CrossRefGoogle ScholarPubMed
Karatay, E., Andersen, M.B., Wessling, M. & Mani, A. 2016 Coupling between buoyancy forces and electroconvective instability near ion-selective surfaces. Phys. Rev. Lett.. 116 (19), 194501.10.1103/PhysRevLett.116.194501CrossRefGoogle ScholarPubMed
Khair, A.S. & Balu, B. 2020 Breaking electrolyte symmetry in induced-charge electro-osmosis. J. Fluid Mechan. 905, A20.10.1017/jfm.2020.754CrossRefGoogle Scholar
Kim, J., Davidson, S. & Mani, A. 2019 Characterization of chaotic electroconvection near flat inert electrodes under oscillatory voltages. Micromachines 10 (3), 161.10.3390/mi10030161CrossRefGoogle ScholarPubMed
Kwak, R., Pham, V.S., Lim, K.M. & Han, J. 2013 Shear flow of an electrically charged fluid by ion concentration polarization: scaling laws for electroconvective vortices. Phys. Rev. Lett. 110 (11), 114501.10.1103/PhysRevLett.110.114501CrossRefGoogle ScholarPubMed
Lazo, I., Peng, C., Xiang, J., Shiyanovskii, S.V. & Lavrentovich, O.D. 2014 Liquid crystal-enabled electro-osmosis through spatial charge separation in distorted regions as a novel mechanism of electrokinetics. Nat. Commun. 5 (1), 5033.10.1038/ncomms6033CrossRefGoogle ScholarPubMed
Levitan, J.A., Devasenathipathy, S., Studer, V., Ben, Y., Thorsen, T., Squires, T.M. & Bazant, M.Z. 2005 Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel. Coll. Surfaces A: Physicochem. Engine. Aspects 267 (1), 122132.10.1016/j.colsurfa.2005.06.050CrossRefGoogle Scholar
Li, G., Townsend, A., Archer, L.A. & Koch, D.L. 2022 Electroconvection near an ion-selective surface with Butler–Volmer kinetics. J. Fluid Mechan. 930 (A26), A26.10.1017/jfm.2021.907CrossRefGoogle Scholar
Liu, W., Zhou, Y. & Shi, P. 2020a Shear electroconvective instability in electrodialysis channel under extreme depletion and its scaling laws. Phys. Rev. E. 101 (4), 043105.10.1103/PhysRevE.101.043105CrossRefGoogle ScholarPubMed
Liu, W., Zhou, Y. & Shi, P. 2020b Scaling relations in shear electroconvective vortices. Phys. Fluids. 32 (7).10.1063/5.0015117CrossRefGoogle Scholar
Liu, W., Zhou, Y.T. & Shi, P.P. 2022 Critical selection of shear sheltering in electroconvective flow from chaotic to steady state. J. Fluid Mechan. 946, A3.10.1017/jfm.2022.557CrossRefGoogle Scholar
Liu, Z.J., Li, D., Song, Y.X., Pan, X.X., Li, D.Q. & Xuan, X.C. 2017 Surface-conduction enhanced dielectrophoretic-like particle migration in electric-field driven fluid flow through a straight rectangular microchannel. Phys. Fluids 29 (10), 102001.10.1063/1.4996191CrossRefGoogle Scholar
Mani, A. & Wang, K.M. 2020 Electroconvection near electrochemical interfaces: experiments, modeling, and computation. Ann. Rev. Fluid Mechan. 52 (1), 509529.10.1146/annurev-fluid-010719-060358CrossRefGoogle Scholar
Messinger, R.J. & Squires, T.M. 2010 Suppression of electro-osmotic flow by surface roughness. Phys. Rev. Lett. 105 (14), 144503.10.1103/PhysRevLett.105.144503CrossRefGoogle ScholarPubMed
Oyarzun, D.I., Hemmatifar, A., Palko, J.W., Stadermann, M. & Santiago, J.G. 2018 Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation. Water Res. X. 1, 100008.Google ScholarPubMed
Pascall, A.J. & Squires, T.M. 2010 Induced charge electro-osmosis over controllably contaminated electrodes. Phys. Rev. Lett. 104 (8), 088301.10.1103/PhysRevLett.104.088301CrossRefGoogle ScholarPubMed
Pascall, A.J. & Squires, T.M. 2011 Electrokinetics at liquid/liquid interfaces. J. Fluid Mechan. 684, 163191.10.1017/jfm.2011.288CrossRefGoogle Scholar
Peng, C., Lazo, I., Shiyanovskii, S.V. & Lavrentovich, O.D. 2014 Induced-charge electro-osmosis around metal and Janus spheres in water: patterns of flow and breaking symmetries. Phys. Rev. E. 90 (5), 051002.10.1103/PhysRevE.90.051002CrossRefGoogle ScholarPubMed
Ramachandran, A., Hawks, S.A., Stadermann, M. & Santiago, J.G. 2018 Frequency analysis and resonant operation for efficient capacitive deionization. Water Res. 144, 581591.10.1016/j.watres.2018.07.066CrossRefGoogle ScholarPubMed
Ramos, A., Morgan, H., Green, N.G. & Castellanos, A. 1998 Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31 (18), 2338.10.1088/0022-3727/31/18/021CrossRefGoogle Scholar
Ramos, A., Morgan, H., Green, N.G. & Castellanos, A. 1999 AC electric-field-induced fluid flow in microelectrodes. J. Coll. Interface Sci. 217 (2), 420422.10.1006/jcis.1999.6346CrossRefGoogle ScholarPubMed
Revil, A. & Linde, N. 2006 Chemico-electromechanical coupling in microporous media. J. Coll. Interface Sci. 302 (2), 682694.10.1016/j.jcis.2006.06.051CrossRefGoogle ScholarPubMed
Revil, A., Ghorbani, A., Su, Z.Y., Cai, H.Z. & Hu, X.Y. 2024 Induced polarization of clay-rich materials - part 3: partially saturated mixtures of clay and pyrite. Geophysics 89 (3), E101E112.10.1190/geo2023-0562.1CrossRefGoogle Scholar
Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S. & Finsterle, S. 2007 Electrokinetic coupling in unsaturated porous media. J. Coll. Interface Sci. 313 (1), 315327.10.1016/j.jcis.2007.03.037CrossRefGoogle ScholarPubMed
Rubin, S., Suss, M.E., Biesheuvel, P.M. & Bercovici, M. 2016 Induced-charge capacitive deionization: the electrokinetic response of a porous particle to an external electric field. Phys. Rev. Lett. 117 (23), 234502.10.1103/PhysRevLett.117.234502CrossRefGoogle Scholar
Rubinstein, I. & Zaltzman, B. 2000 Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E. 62 (2), 22382251.10.1103/PhysRevE.62.2238CrossRefGoogle Scholar
Rubinstein, I. & Zaltzman, B. 2001 Electro-osmotic slip of the second kind and instability in concentration polarization at electrodialysis membranes. Math. Models Methods Appl. Sci. 11 (02), 263300.10.1142/S0218202501000866CrossRefGoogle Scholar
Rubinstein, I. & Zaltzman, B. 2003 Wave number selection in a nonequilibrium electro-osmotic instability. Phys. Rev. E. 68 (3), 032501.10.1103/PhysRevE.68.032501CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2012 Induced-charge electro-osmosis beyond weak fields. Phys. Rev. E. 86 (6), 061506.10.1103/PhysRevE.86.061506CrossRefGoogle ScholarPubMed
Squires, T.M. & Bazant, M.Z. 2004 Induced-charge electro-osmosis. J. Fluid Mechan. 509, 217252.10.1017/S0022112004009309CrossRefGoogle Scholar
Squires, T.M. & Quake, S.R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Modern Phys. 77 (3), 9771026.10.1103/RevModPhys.77.977CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mechan. 36, 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Traoré, P. & Wu, J. 2013 On the limitation of imposed velocity field strategy for coulomb-driven electroconvection flow simulations. J. Fluid Mechan. 727, R3.10.1017/jfm.2013.267CrossRefGoogle Scholar
Xiao, C., Wang, X., Zhao, Y.M., Zhang, H.W., Song, J.Y., Vikesland, P., et al. 2024 DC vs AC electrokinetics-driven nanoplasmonic raman monitoring of charged analyte molecules in ionic solutions. J. Phys. Chem. C. 128 (36), 1510315116.10.1021/acs.jpcc.4c04485CrossRefGoogle ScholarPubMed
Xu, B., Gu, Z., Liu, W., Huo, P., Zhou, Y., S., M. & Rubinstein,et al. 2020 Electro-osmotic instability of concentration enrichment in curved geometries for an aqueous electrolyte. Phys. Rev. Fluids 5 (9), 091701.10.1103/PhysRevFluids.5.091701CrossRefGoogle Scholar
Xuan, X.C., Sinton, D. & Li, D.Q. 2004 Thermal end effects on electroosmotic flow in a capillary. Intern. J. Heat Mass Transfer 47 (14–16), 31453157.10.1016/j.ijheatmasstransfer.2004.02.023CrossRefGoogle Scholar
Zaltzman, B. & Rubinstein, I. 2007 Electro-osmotic slip and electroconvective instability. J. Fluid Mechan. 579, 173226.10.1017/S0022112007004880CrossRefGoogle Scholar