Published online by Cambridge University Press: 04 April 2017
The unconstrained exponential family of random graphs assumes no prior knowledge of the graph before sampling, but it is natural to consider situations where partial information about the graph is known, for example the total number of edges. What does a typical random graph look like, if drawn from an exponential model subject to such constraints? Will there be a similar phase transition phenomenon (as one varies the parameters) as that which occurs in the unconstrained exponential model? We present some general results for this constrained model and then apply them to obtain concrete answers in the edge-triangle model with fixed density of edges.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.