Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:39:57.029Z Has data issue: false hasContentIssue false

Twisted group rings which are semi-prime Goldie rings

Published online by Cambridge University Press:  18 May 2009

A. Reid
Affiliation:
Mathematics Department, University of Aberdeen, Aberdeen AB9 2UB
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we examine when a twisted group ring, Rγ(G), has a semi-simple, artinian quotient ring. In §1 we assemble results and definitions concerning quotient rings, Ore sets and Goldie rings and then, in §2, we define Rγ(G). We prove a useful theorem for constructing a twisted group ring of a factor group and establish an analogue of a theorem of Passman. Twisted polynomial rings are discussed in §3 and I am indebted to the referee for informing me of the existence of [4]. These are used as a tool in proving results in §4.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1975

References

REFERENCES

1.Connell, I. G., On the group ring, Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
2.Goldie, A. W., Structure of noetherian rings, Lectures on rings and modules, Lecture Notes in Mathematics No. 246 (Springer-Verlag, 1972).Google Scholar
3.Herstein, I. N., Noncommutative rings, Cams Mathematical Monographs (Math. Assoc. of America, 1968).Google Scholar
4.Horn, A., Gruppenringe fastpolyzyklischer Gruppen und Ordnungen in Quasi-Frobenius-Ringen, Mitt. Math. Sent. Giessen 100 (1973).Google Scholar
5.Jennings, S. A., The group ring of a class of infinite nilpotent groups, Canad. J. Math. 7 (1955), 169187.CrossRefGoogle Scholar
6.Lambek, J., Lectures on rings and modules (Blaisdell, 1966).Google Scholar
7.Passman, D. S., Nil ideals in group rings, Mich. Math. J. 9 (1962), 375384.CrossRefGoogle Scholar
8.Passman, D. S., Radicals of twisted group rings, Proc. London Math. Soc. (3) 20 (1970), 409437.CrossRefGoogle Scholar
9.Passman, D. S., Radicals of twisted group rings II, Proc. London Math. Soc. (3) 22 (1971), 633651.CrossRefGoogle Scholar
10.Robinson, D. J. S., Finiteness conditions and generalised soluble groups, Parts 1, 2 Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 62, 63(Springer-Verlag, 1972).Google Scholar
11.Robson, J. C., Artinian quotient rings, Proc. London Math. Soc. (3) 17 (1972), 600616.Google Scholar
12.Smith, P. F., Quotient rings of group rings, /. London Math. Soc. (2) 3 (1971), 645660.CrossRefGoogle Scholar