Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T18:32:55.575Z Has data issue: false hasContentIssue false

LOCAL Cr-RIGHT EQUIVALENCE OF Cr+1 FUNCTIONS

Published online by Cambridge University Press:  10 June 2016

PIOTR MIGUS*
Affiliation:
Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland e-mail: migus@math.uni.lodz.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f,g:(ℝn, 0) → (ℝ, 0) be Cr+1 functions, r ∈ ℕ. We will show that if ∇f(0)=0 and there exist a neighbourhood U of 0 ∈ ℝn and a constant C > 0 such that

$$\begin{equation*} \left|\partial^m(g-f)(x)\right| ≤ C \left|\nabla f(x)\right|^{r+2-|m|} \quad \textrm{ for } x\in U, \end{equation*} $$
and for any m ∈ ℕ0n such that |m| ≤ r, then there exists a Cr diffeomorphism ϕ:(ℝn, 0) → (ℝn, 0) such that f = g ° ϕ in a neighbourhood of 0 ∈ ℝn.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2016 

References

REFERENCES

1. Bochnak, J., Relévement des jets, Séminaire Pierre Lelong (Analyse), (année 1970–1971), Lecture Notes in Math. 275 (1972), 106118.CrossRefGoogle Scholar
2. Kuiper, N. H., C 1-equivalence of functions near isolated critical points, in Symposium on Infinite Dimensional Topology (Louisiana State Univ., Baton Bouge, La., 1967), Ann. of Math. Studies, vol. 69 (Princeton Univ. Press, Princeton, NJ, 1972), 199218.CrossRefGoogle Scholar
3. Kuo, T. C., On C 0-sufficiency of jets of potential functions, Topology 8 (1969), 167171.CrossRefGoogle Scholar
4. Łojasiewicz, S., Ensembles semi-analytiques, preprint IHES, 1965.Google Scholar
5. Łojasiewicz, S., Sur les trajectoires du gradient d'une function analytique, Geometry Seminars, 1982–1983 (Univ. Stud. Bologna, Bologna 1984), 115117.Google Scholar
6. Migus, P., Cr -right equivalence of analytic functions, Demonstratio Math. 48 (2) (2015), 313321.CrossRefGoogle Scholar
7. Osińska-Ulrych, B., Skalski, G. and Spodzieja, S., On C 0-sufficiency of jets. Analytic and Algebraic Geometry (Łódź University Press, Łódź, Poland, 2013), 95113.Google Scholar