Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:30:06.096Z Has data issue: false hasContentIssue false

On travelling wave solutions of a model of a liquid film flowing down a fibre

Published online by Cambridge University Press:  12 August 2021

HANGJIE JI
Affiliation:
Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA email: hangjie@math.ucla.edu
ROMAN TARANETS
Affiliation:
Institute of Applied Mathematics and Mechanics of the NASU, Dobrovol’s’koho Str. 1, Sloviansk 84100, Ukraine email: taranets_r@yahoo.com
MARINA CHUGUNOVA
Affiliation:
Claremont Graduate University, 150 E. 10th Street, Claremont, CA 91711, USA email: marina.chugunova@cgu.edu

Abstract

Existence of non-negative weak solutions is shown for a full curvature thin-film model of a liquid thin film flowing down a vertical fibre. The proof is based on the application of a priori estimates derived for energy-entropy functionals. Long-time behaviour of these weak solutions is analysed and, under some additional constraints for the model parameters and initial values, convergence towards a travelling wave solution is obtained. Numerical studies of energy minimisers and travelling waves are presented to illustrate analytical results.

Type
Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sadeghpour, A., Oroumiyeh, F., Zhu, Y., Ko, D. D., Ji, H., Bertozzi, A. L. & Ju, Y. S. (2021) Experimental study of a string-based counterflow wet electrostatic precipitator for collection of fine and ultrafine particles. J. Air Waste Manag. Assoc. 71(7), 851865 doi: 10.1080/10962247.2020.1869627.CrossRefGoogle Scholar
Beretta, E., Bertsch, M. & Dal Passo, R. (1995) Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Rational Mech. Anal. 129(2), 175200.CrossRefGoogle Scholar
Bernis, F. & Friedman, A. (1990) Higher order nonlinear degenerate parabolic equations. J. Differ. Equations 83(1), 179206.CrossRefGoogle Scholar
Chang, H.-C. & Demekhin, E. A. (1999) Mechanism for drop formation on a coated vertical fibre. J. Fluid Mech. 380, 233255.CrossRefGoogle Scholar
Chou, K.-S. & Du, S.-Z. (2008) Estimates on the hausdorff dimension of the rupture set of a thin film. SIAM J. Math. Anal. 40(2), 790823.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. (2006) On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553, 85105.CrossRefGoogle Scholar
de Gennes, P. G. (1985) Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Eidel’man, S. D. (1969) Parabolic Systems, North Holland Publishing Company, Amsterdam, Netherlands.Google Scholar
Frenkel, A. (1992) Nonlinear theory of strongly undulating s flowing down vertical cylinders. EPL (Europhys. Lett.) 18(7), 583.CrossRefGoogle Scholar
Ji, H., Falcon, C., Sadeghpour, A., Zeng, Z., Ju, Y. & Bertozzi, A. (2019) Dynamics of thin liquid films on vertical cylindrical fibres. J. Fluid Mech. 865, 303327.CrossRefGoogle Scholar
Ji, H. & Li, L. (2019) Numerical methods for thermally stressed shallow shell equations. J. Comput. Appl. Math. 362, 626652.CrossRefGoogle Scholar
Ji, H., Sadeghpour, A., Ju, Y. & Bertozzi, A. (2020) Modelling film flows down a fibre influenced by nozzle geometry. J. Fluid Mech. 901, R6. doi: 10.1017/jfm.2020.605.CrossRefGoogle Scholar
Ji, H. & Witelski, T. P. (2018) Instability and dynamics of volatile thin films. Phys. Rev. Fluids 3(2), 024001.CrossRefGoogle Scholar
Ji, H. & Witelski, T. P. (2020) Steady states and dynamics of a thin-film-type equation with non-conserved mass. Eur. J. Appl. Math. 31(6), 9681001.CrossRefGoogle Scholar
Kalliadasis, S. & Chang, H.-C. (1994) Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135168.CrossRefGoogle Scholar
Keller, H. B. (1987) Lectures on numerical methods in bifurcation problems. Appl. Math. 217, 50.Google Scholar
Kliakhandler, I., Davis, S. & Bankoff, S. (2001) Viscous beads on vertical fibre. J. Fluid Mech. 429, 381390.CrossRefGoogle Scholar
Marzuola, J. L., Swygert, S. R. & Taranets, R. (2020) Nonnegative weak solutions of thin-film equations related to viscous flows in cylindrical geometries. J. Evol. Equations 20, 12271249.CrossRefGoogle Scholar
Rosenau, P. & Oron, A. (1989) Evolution and breaking of liquid film flowing on a vertical cylinder. Phys. Fluids A Fluid Dyn. 1(11), 17631766.CrossRefGoogle Scholar
Ruyer-Quil, C., Treveleyan, P., Giorgiutti-Dauphiné, F., Duprat, C. & Kalliadasis, S. (2008) Modelling film flows down a fibre. J. Fluid Mech. 603, 431462.CrossRefGoogle Scholar
Ruyer-Quil, C., Trevelyan, S. P. M. J., Giorgiutti-Dauphiné, F., Duprat, C. & Kalliadasis, S. (2009) Film flows down a fiber: modeling and influence of streamwise viscous diffusion. Eur. Phys. J. Spec. Top. 166(1), 8992.CrossRefGoogle Scholar
Sadeghpour, A., Zeng, Z., Ji, H., Ebrahimi, N. D., Bertozzi, A. & Ju, Y. (2019) Water vapor capturing using an array of traveling liquid beads for desalination and water treatment. Sci. Adv. 5(4), eaav7662.CrossRefGoogle Scholar
Sadeghpour, A., Zeng, Z. & Ju, Y. S. (2017) Effects of nozzle geometry on the fluid dynamics of thin liquid films flowing down vertical strings in the Rayleigh-Plateau regime. Langmuir 33, 62926299.CrossRefGoogle ScholarPubMed
Shlang, T. & Sivashinsky, G. (1982) Irregular flow of a liquid film down a vertical column. J. de Physique 43(3), 459466.CrossRefGoogle Scholar
Solonnikov, V. A. (1965) On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Matematicheskogo Instituta Imeni VA Steklova 83, 3163.Google Scholar
Thiele, U. (2011) On the depinning of a drop of partially wetting liquid on a rotating cylinder. J. Fluid Mech. 671, 121136.CrossRefGoogle Scholar
Trifonov, Y. Y. (1992) Steady-state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes. AIChE J. 38(6), 821–834.CrossRefGoogle Scholar
Zeng, Z., Sadeghpour, A. & Ju, Y. S. (2018) Thermohydraulic characteristics of a multi-string direct-contact heat exchanger. Int. J. Heat Mass Transfer 126, 536544.CrossRefGoogle Scholar
Zeng, Z., Sadeghpour, A. & Ju, Y. S. (2019) A highly effective multi-string humidifier with a low gas stream pressure drop for desalination. Desalination 449, 92100.CrossRefGoogle Scholar