Article contents
Smooth foliations by circles of
$S^{7}$ with unbounded periods and nonlinearizable multicentres
Published online by Cambridge University Press: 04 May 2017
Abstract
We give an example of a $C^{\infty }$ vector field
$X$, defined in a neighbourhood
$U$ of
$0\in \mathbb{R}^{8}$, such that
$U-\{0\}$ is foliated by closed integral curves of
$X$, the differential
$DX(0)$ at
$0$ defines a one-parameter group of non-degenerate rotations and
$X$ is not orbitally equivalent to its linearization. Such a vector field
$X$ has the first integral
$I(x)=\Vert x\Vert ^{2}$, and its main feature is that its period function is locally unbounded near the stationary point. This proves in the
$C^{\infty }$ category that the classical Poincaré centre theorem, true for planar non-degenerate centres, is not generalizable to multicentres. Such an example is obtained through a careful study and a suitable modification of a celebrated example by Sullivan [A counterexample to the periodic orbit conjecture. Publ. Math. Inst. Hautes Études Sci. 46 (1976), 5–14], by blowing up the stationary point at the origin and through the construction of a smooth one-parameter family of foliations by circles of
$S^{7}$ whose orbits have unbounded lengths (equivalently, unbounded periods) for each value of the parameter and which smoothly converges to the Hopf fibration
$S^{1}{\hookrightarrow}S^{7}\rightarrow \mathbb{CP}^{3}$.
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press, 2017
References
- 1
- Cited by