Published online by Cambridge University Press: 25 September 2017
In this paper, we consider the product space of several non-compact finite-volume hyperbolic spaces, $V_{1},V_{2},\ldots ,V_{k}$ of dimension
$n$. Let
$\text{T}^{1}(V_{i})$ denote the unit tangent bundle of
$V_{i}$ and
$g_{t}$ denote the geodesic flow on
$\text{T}^{1}(V_{i})$ for each
$i=1,\ldots ,k$. We define
$$\begin{eqnarray}{\mathcal{D}}_{k}:=\{(v_{1},\ldots ,v_{k})\,\in \,\text{T}^{1}(V_{1})\times \cdots \times \text{T}^{1}(V_{k})\,:\,(g_{t}(v_{1}),\ldots ,g_{t}(v_{k}))\text{ diverges as }t\rightarrow \infty \}.\end{eqnarray}$$
${\mathcal{D}}_{k}$ is equal to
$k(2n-1)-((n-1)/2)$. This extends a result of Cheung.