Published online by Cambridge University Press: 18 August 2017
We show that $\unicode[STIX]{x1D714}(n)$ and
$\unicode[STIX]{x1D6FA}(n)$, the number of distinct prime factors of
$n$ and the number of distinct prime factors of
$n$ counted according to multiplicity, are good weighting functions for the pointwise ergodic theorem in
$L^{1}$. That is, if
$g$ denotes one of these functions and
$S_{g,K}=\sum _{n\leq K}g(n)$, then for every ergodic dynamical system
$(X,{\mathcal{A}},\unicode[STIX]{x1D707},\unicode[STIX]{x1D70F})$ and every
$f\in L^{1}(X)$,
$$\begin{eqnarray}\lim _{K\rightarrow \infty }\frac{1}{S_{g,K}}\mathop{\sum }_{n=1}^{K}g(n)f(\unicode[STIX]{x1D70F}^{n}x)=\int _{X}f\,d\unicode[STIX]{x1D707}\quad \text{for }\unicode[STIX]{x1D707}\text{ almost every }x\in X.\end{eqnarray}$$
$L^{p}$,
$p>1$.