Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T18:55:45.223Z Has data issue: false hasContentIssue false

Positivity of Hodge bundles of abelian varieties over some function fields

Published online by Cambridge University Press:  03 August 2021

Xinyi Yuan*
Affiliation:
Beijing International Center for Mathematical Research, Peking University, Haidian District, Beijing100871, PR Chinayxy@bicmr.pku.edu.cn

Abstract

The main result of this paper concerns the positivity of the Hodge bundles of abelian varieties over global function fields. As applications, we obtain some partial results on the Tate–Shafarevich group and the Tate conjecture of surfaces over finite fields.

Type
Research Article
Copyright
© 2021 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anantharaman, S., Schémas en groupes, espaces homogénes et espaces algébriques sur une base de dimension 1, in Sur les groupes algébriques, Mémoires de la Société Mathématique de France, vol. 33 (Société mathématique de France, 1973), 579.Google Scholar
Artin, M. and Swinnerton-Dyer, H. P. F., The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math. 20 (1973), 249266.CrossRefGoogle Scholar
Barton, C. M., Tensor products of ample vector bundles in characteristic p, Amer. J. Math. 93 (1971), 429438.CrossRefGoogle Scholar
Bauer, W., On the conjecture of Birch and Swinnerton-Dyer for abelian varieties over function fields in characteristic $p > 0$. Invent. Math. 108 (1992), 263287.Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 21 (Springer, Berlin, 1990).Google Scholar
Bost, J. B., Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems, Geometric Aspects of Dwork Theory, vol. I, II (Walter de Gruyter, Berlin, 2004), 371418.Google Scholar
Conrad, B., Gabber, O. and Prasad, G., Pseudo-reductive groups (Cambridge University Press, 2010).CrossRefGoogle Scholar
Chai, C.-L., Monodromy of Hecke-invariant subvarieties, Pure Appl. Math. Q. 1 (2005), 291303.CrossRefGoogle Scholar
Charles, F., The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194 (2013), 119145.CrossRefGoogle Scholar
Conrad, B., Chow's $K/k$-image and $K/k$-trace, and the Lang-Néron theorem, Enseign. Math. (2) 52 (2006), 37108.Google Scholar
Dieudonné, J. and Grothendieck, A., Éléments de géométrie algébrique, Publ. Math. Inst. Hautes Études Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967).Google Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. (German) [Finiteness theorems for abelian varieties over number fields], Invent. Math. 73 (1983), 349366.CrossRefGoogle Scholar
Faltings, G. and Chai, C., Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 22 (Springer, Berlin, 1990), with an appendix by David Mumford.CrossRefGoogle Scholar
Ghioca, D., Elliptic curves over the perfect closure of a function field, Canad. Math. Bull. 53 (2010), 8794.CrossRefGoogle Scholar
Ghioca, D. and Moosa, R., Division points on subvarieties of isotrivial semi-abelian varieties, Int. Math. Res. Not. (IMRN) 2006 (2006), 65437.Google Scholar
Hartshorne, R., Ample vector bundles, Publ. Math. Inst. Hautes Études Sci. 29 (1966), 6394.CrossRefGoogle Scholar
Hartshorne, R., Ample vector bundles on curves, Nagoya Math. J. 43 (1971), 7389.CrossRefGoogle Scholar
Huybrechts, D. and Lehn, M., The geometry of moduli spaces of sheaves, Aspects of Mathematics, vol. 31 (Friedr. Vieweg & Sohn, Braunschweig, 1997).CrossRefGoogle Scholar
de Jong, A. J., Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), 301333.CrossRefGoogle Scholar
Künnemann, K., Projective regular models for abelian varieties, semi-stable reduction, and the height pairing, Duke Math. J. 95 (1998), 161212.CrossRefGoogle Scholar
Kato, K. and Trihan, F., On the conjectures of Birch and Swinnerton-Dyer in characteristic $p>0$, Invent. Math. 153 (2003), 537592.CrossRefGoogle Scholar
Kim, M., Purely inseparable points on curves of higher genus, Math. Res. Lett. 4 (1997), 663666.CrossRefGoogle Scholar
Koblitz, N., $p$-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (1975), 119218.Google Scholar
Langer, A., Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004), 251276.CrossRefGoogle Scholar
Lazarsfeld, R., Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 49 (Springer, Berlin, 2004).CrossRefGoogle Scholar
Moret-Bailly, L., Familles de courbes et de variétés abéliennes II. Exemples, in Séminaire sur les pinceaux de courbes de genre au moins deux, ed. L. Szpiro, Astérisque, vol. 86 (Société mathématique de France, 1981).Google Scholar
Moret-Bailly, L., Pinceaux de variéte’s abéliennes, Astérisque, vol. 129 (Société mathématique de France, 1985).Google Scholar
Milne, J. S., The Tate–Šafarevič group of a constant abelian variety, Invent. Math. 6 (1968), 91105.CrossRefGoogle Scholar
Milne, J. S., Elements of order $p$ in the Tate–Šafarevič group, Bull. London Math. Soc. 2 (1970), 293296.CrossRefGoogle Scholar
Milne, J. S., On a conjecture of Artin and Tate, Ann. of Math. (2) 102 (1975), 517533.CrossRefGoogle Scholar
Milne, J. S., Étale cohomology (Princeton University Press, Princeton, 1980).Google Scholar
Milne, J. S., Algebraic groups: the theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, vol. 170 (Cambridge University Press, 2017).CrossRefGoogle Scholar
Milne, J. S., Abelian varieties, available at https://www.jmilne.org/math/CourseNotes/AV.pdf (2016).Google Scholar
Maulik, D., Supersingular K3 surfaces for large primes, with an appendix by Andrew Snowden, Duke Math. J. 163 (2014), 23572425.CrossRefGoogle Scholar
Morrow, M., A variational Tate conjecture in crystalline cohomology, J. Eur. Math. Soc. (JEMS) 21 (2019), 34673511.CrossRefGoogle Scholar
Madapusi Pera, K., The Tate conjecture for K3 surfaces in odd characteristic, Invent. Math. 201 (2015), 625668.CrossRefGoogle Scholar
Mumford, D., An analytic construction of degenerate abelian varieties over complete rings, Compos. Math. 24 (1972), 239272.Google Scholar
Mumford, D., Abelian varieties, second edition (Oxford University Press, 1974).Google Scholar
Nguyen, N. H., Whitney theorems and Lefschetz pencils over finite fields, PhD thesis, University of California at Berkeley (2005).Google Scholar
Nygaard, N. and Ogus, A., Tate's conjecture for K3 surfaces of finite height, Ann. of Math. (2) 122 (1985), 461507.CrossRefGoogle Scholar
Nygaard, N. O., The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math. 74 (1983), 213237.CrossRefGoogle Scholar
Oort, F., Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95119.CrossRefGoogle Scholar
Oort, F., Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math. (2) 152 (2000), 183206.CrossRefGoogle Scholar
Oort, F., Monodromy, Hecke orbits and Newton polygon strata, Preprint (2003), http://www.math.uu.nl/people/oort.Google Scholar
Poonen, B., Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), 10991127.CrossRefGoogle Scholar
Rössler, D., On the group of purely inseparable points of an abelian variety defined over a function field of positive characteristic, Comment. Math. Helv. 90 (2015), 2332.CrossRefGoogle Scholar
Rössler, D., On the group of purely inseparable points of an abelian variety defined over a function field of positive characteristic, II, Algebra Number Theory 14 (2020), 11231173.CrossRefGoogle Scholar
Scanlon, T., A positive characteristic Manin-Mumford theorem, Compos. Math. 141 (2005), 13511364.CrossRefGoogle Scholar
Schneider, P., Zur Vermutung von Birch und Swinnerton-Dyer über globalen Funktionenkörpern. (German) [On the conjecture of Birch and Swinnerton-Dyer over global function fields], Math. Ann. 260 (1982), 495510.CrossRefGoogle Scholar
Demazure, M. and Grothendieck, A., Séminaire de Géométrie Algébrique du Bois Marie. Schémas en groupes I, II, III, Lecture Notes in Mathematics, vol. 151, 152, 153 (Springer, New York, 1970).Google Scholar
Deligne, P. and Katz, N., Groupes de Monodromie en Géométrie Algébrique, I, Lecture Notes in Mathematics, vol. 288 (Springer, Berlin, 1972), II, Lecture Notes in Mathematics, vol. 340 (Springer, Berlin, 1973).CrossRefGoogle Scholar
Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134144.CrossRefGoogle Scholar
Tate, J., p-divisible groups, in Proceedings of a conference on local fields (Driebergen, 1966) (Springer, 1967), 158183.CrossRefGoogle Scholar
Tate, J. T., On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, vol. 9, Exp. No. 306 (Société mathématique de France, Paris, 1995), 415440.Google Scholar
Trihan, F. and Yasuda, S., The $\ell$-parity conjecture for abelian varieties over function fields of characteristic $p>0$, Compos. Math. 150 (2014), 507522.CrossRefGoogle Scholar
Ulmer, D., Curves and Jacobians over function fields. Arithmetic geometry over global function fields, Advanced Courses in Mathematics – CRM Barcelona (Birkhäuser/Springer, Basel, 2014), 283337.Google Scholar
Zarhin, J. G., Endomorphisms of abelian varieties and points of finite order in characteristic p. (Russian), Mat. Zametki 21 (1977), 737744.Google Scholar