Hostname: page-component-68c7f8b79f-rgmxm Total loading time: 0 Render date: 2025-12-16T08:40:26.967Z Has data issue: false hasContentIssue false

On proper splinters in positive characteristic

Published online by Cambridge University Press:  16 December 2025

Johannes Krah
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany jkrah@math.uni-bielefeld.de
Charles Vial
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany vial@math.uni-bielefeld.de

Abstract

While the splinter property is a local property for Noetherian schemes in characteristic zero, Bhatt observed that it imposes strong conditions on the global geometry of proper schemes in positive characteristic. We show that if a proper scheme over a field of positive characteristic is a splinter, then its Nori fundamental group scheme is trivial and its Kodaira dimension is negative. In another direction, Bhatt also showed that any splinter in positive characteristic is a derived splinter. We ask whether the splinter property is a derived invariant for projective varieties in positive characteristic and give a positive answer for normal Gorenstein projective varieties with big anticanonical divisor. We also show that global F-regularity is a derived invariant for normal Gorenstein projective varieties in positive characteristic.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achinger, P., Witaszek, J. and Zdanowicz, M., Global Frobenius liftability I, J. Eur. Math. Soc. (JEMS) 23 (2021), 26012648; MR 4269423.CrossRefGoogle Scholar
Addington, N., Bragg, D. and Petrov, A., Hodge numbers are not derived invariants in positive characteristic, Math. Ann. 387 (2023), 847878; MR 4631059.CrossRefGoogle Scholar
André, Y., La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 7193; MR 3814651.10.1007/s10240-017-0097-9CrossRefGoogle Scholar
Antieau, B. and Bragg, D., Derived invariants from topological Hochschild homology, Algebr. Geom. 9 (2022), 364399; MR 4436685.10.14231/AG-2022-011CrossRefGoogle Scholar
Bhatt, B., Derived splinters in positive characteristic, Compositio Math. 148 (2012), 17571786; MR 2999303.10.1112/S0010437X12000309CrossRefGoogle Scholar
Bhatt, B., Cohen–Macaulayness of absolute integral closures, Preprint (2021), arXiv:2008.08070.Google Scholar
Bhatt, B., Ma, L., Patakfalvi, Z., Schwede, K., Tucker, K., Waldron, J. and Witaszek, J., Globally +-regular varieties and the minimal model program for threefolds in mixed characteristic, Publ. Math. Inst. Hautes Études Sci. 138 (2023), 69227; MR 4666931.CrossRefGoogle Scholar
Biswas, I., On the fundamental group-scheme, Bull. Sci. Math. 133 (2009), 477483; MR 2538008.10.1016/j.bulsci.2008.11.002CrossRefGoogle Scholar
Bombieri, E. and Mumford, D. B., Enriques’ classification of surfaces in char. $$p$$ . III, Invent. Math. 35 (1976), 197232; MR 491720.CrossRefGoogle Scholar
Brion, M., Some structure theorems for algebraic groups, in Algebraic groups: structure and actions, Proceedings of Symposia in Pure Mathematics, vol. 94 (American Mathematical Society, Providence, RI, 2017), 53126; MR 3645068.Google Scholar
Brion, M. and Kumar, S., Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231 (Birkhäuser Boston, Boston, MA, 2005); MR 2107324.Google Scholar
Cai, H., Lee, S., Ma, L., Schwede, K. and Tucker, K., Perfectoid signature, perfectoid Hilbert–Kunz multiplicity, and an application to local fundamental groups, Preprint (2023), arXiv:2209.04046.Google Scholar
Carvajal-Rojas, J. A., Finite torsors over strongly $$F$$ -regular singularities, Épijournal Géom. Algébrique 6 (2022), 1; MR 4391081.Google Scholar
Chatzistamatiou, A. and Rülling, K., Vanishing of the higher direct images of the structure sheaf, Compositio Math. 151 (2015), 21312144; MR 3427575.CrossRefGoogle Scholar
Cossart, V. and Piltant, O., Resolution of singularities of threefolds in positive characteristic. II, J. Algebra 321 (2009), 18361976; MR 2494751.10.1016/j.jalgebra.2008.11.030CrossRefGoogle Scholar
Datta, R. and Tucker, K., On some permanence properties of (derived) splinters, Michigan Math. J. 73 (2023), 371400; MR 4584866.Google Scholar
Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 2 (Springer-Verlag, Berlin, 1998); MR 1644323.Google Scholar
Gongyo, Y., Li, Z., Patakfalvi, Z., Schwede, K., Tanaka, H. and Zong, R., On rational connectedness of globally $$F$$ -regular threefolds, Adv. Math. 280 (2015), 4778; MR 3350212.CrossRefGoogle Scholar
Gongyo, Y. and Takagi, S., Surfaces of globally $$F$$ -regular and $$F$$ -split type, Math. Ann. 364 (2016), 841855; MR 3466854.CrossRefGoogle Scholar
Görtz, U. and Wedhorn, T., Algebraic geometry II: Cohomology of schemes—with examples and exercises, Springer Studium Mathematik—Master (Springer Spektrum, 2023); MR 4704076.CrossRefGoogle Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965); MR 199181.Google Scholar
Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966); MR 217086.Google Scholar
Hara, N., A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), 981996; MR 1646049.CrossRefGoogle Scholar
Hara, N., Looking out for Frobenius summands on a blown-up surface of $${P^2}$$ , Illinois J. Math. 59 (2015), 115142; MR 3459631.10.1215/ijm/1455203162CrossRefGoogle Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer-Verlag, New York–Heidelberg, 1977); MR 0463157.10.1007/978-1-4757-3849-0CrossRefGoogle Scholar
Hartshorne, R., Generalized divisors on Gorenstein schemes, K-Theory 8 (1994), 287339; MR 1291023.10.1007/BF00960866CrossRefGoogle Scholar
Hashimoto, M., Surjectivity of multiplication and $$F$$ -regularity of multigraded rings, in Commutative algebra (Grenoble/Lyon, 2001), Contemporary Mathematics, vol. 331 (American Mathematical Society, Providence, RI, 2003), 153170; MR 2013164.10.1090/conm/331/05908CrossRefGoogle Scholar
Hernández Ruipérez, D., López Martín, A. C., and de Salas, F. S., Relative integral functors for singular fibrations and singular partners, J. Eur. Math. Soc. (JEMS) 11 (2009), 597625; MR 2505443.10.4171/jems/162CrossRefGoogle Scholar
Hochster, M. and Huneke, C., Tight closure and strong $$F$$ -regularity, Mém. Soc. Math. Fr. (N.S.) 38 (1989), 119133; MR 1044348.Google Scholar
Hochster, M. and Huneke, C., Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), 5389; MR 1147957.10.2307/2946563CrossRefGoogle Scholar
Huybrechts, D., Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, Oxford, 2006); MR 2244106.10.1093/acprof:oso/9780199296866.001.0001CrossRefGoogle Scholar
Katz, N. M., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. Inst. Hautes Études Sci. 39 (1970), 175232; MR 291177.10.1007/BF02684688CrossRefGoogle Scholar
Kawamata, Y., $$D$$ -equivalence and $$K$$ -equivalence, J. Differential Geom. 61 (2002), 147171; MR 1949787.CrossRefGoogle Scholar
Kawakami, T. and Totaro, B., Endomorphisms of varieties and bott vanishing, J. Algebraic Geom. 34 (2025), 381405.Google Scholar
Keel, S., Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), 253286; MR 1680559.10.2307/121025CrossRefGoogle Scholar
Kirwan, F., Complex algebraic curves, London Mathematical Society Student Texts, vol. 23 (Cambridge University Press, Cambridge, 1992); MR 1159092.CrossRefGoogle Scholar
Kollár, J., Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 32 (Springer-Verlag, Berlin, 1996); MR 1440180.10.1007/978-3-662-03276-3CrossRefGoogle Scholar
Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998), with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original; https://mathscinet.ams.org/mathscinet/relay-station?mr=1440180. MR 1658959.Google Scholar
Lipman, J., Rational singularities, with applications to algebraic surfaces and unique factorization, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 195279; MR 276239.CrossRefGoogle Scholar
Lipman, J. and Teissier, B., Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), 97116; MR 600418.10.1307/mmj/1029002461CrossRefGoogle Scholar
Lunts, V. A. and Orlov, D. O., Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), 853908; MR 2629991.Google Scholar
Mumford, D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5 (Oxford University Press, London, 1970); MR 282985.Google Scholar
Nori, M. V., The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73122; MR 682517.10.1007/BF02967978CrossRefGoogle Scholar
Orlov, D. O., Derived categories of coherent sheaves on abelian varieties and equivalences between them, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 131158; MR 1921811.Google Scholar
Pareigis, B., When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588596; MR 280522.10.1016/0021-8693(71)90141-4CrossRefGoogle Scholar
Patakfalvi, Z., Schwede, K. and Tucker, K., Positive characteristic algebraic geometry, in Surveys on recent developments in algebraic geometry, Proceedings of Symposia in Pure Mathematics, vol. 95 (American Mathematical Society, Providence, RI, 2017), 3380; MR 3727496.Google Scholar
Patakfalvi, Z. and Zdanowicz, M., On the Beauville–Bogomolov decomposition in characteristic $$p \geqslant 0$$ , Preprint (2020), arXiv:1912.12742.Google Scholar
Schwede, K. and Smith, K. E., Globally $$F$$ -regular and log Fano varieties, Adv. Math. 224 (2010), 863894; MR 2628797.CrossRefGoogle Scholar
Schwede, K. and Tucker, K., On the behavior of test ideals under finite morphisms, J. Algebraic Geom. 23 (2014), 399443; MR 3205587.10.1090/S1056-3911-2013-00610-4CrossRefGoogle Scholar
Singh, A. K., $$Q$$ -Gorenstein splinter rings of characteristic $$p$$ are F-regular, Math. Proc. Cambridge Philos. Soc. 127 (1999), 201205; MR 1735920.10.1017/S0305004199003710CrossRefGoogle Scholar
Smith, K. E., Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553572, dedicated to William Fulton on the occasion of his 60th birthday; MR 1786505.10.1307/mmj/1030132733CrossRefGoogle Scholar
Speyer, D. E., Frobenius split subvarieties pull back in almost all characteristics, J. Commut. Algebra 12 (2020), 573579; MR 4194942.CrossRefGoogle Scholar
The Stacks Project Authors, The Stacks Project (2024), https://stacks.math.columbia.edu/.Google Scholar
Totaro, B., Moving codimension-one subvarieties over finite fields, Amer. J. Math. 131 (2009), 18151833; MR 2567508.CrossRefGoogle Scholar
Uehara, H., An example of Fourier-Mukai partners of minimal elliptic surfaces, Math. Res. Lett. 11 (2004), 371375; MR 2067481.10.4310/MRL.2004.v11.n3.a9CrossRefGoogle Scholar
van der Geer, G. and Katsura, T., On the height of Calabi-Yau varieties in positive characteristic, Doc. Math. 8 (2003), 97113; MR 2029163.CrossRefGoogle Scholar