Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:48:39.881Z Has data issue: false hasContentIssue false

Automorphisms of Drinfeld half-spaces over a finite field

Published online by Cambridge University Press:  26 April 2013

Bertrand Rémy
Affiliation:
Université de Lyon, Université Lyon1-CNRS, Institut Camille Jordan - UMR5208, 43 bd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France email remy@math.univ-lyon1.fr
Amaury Thuillier
Affiliation:
Université de Lyon, Université Lyon1-CNRS, Institut Camille Jordan - UMR5208, 43 bd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France email thuillier@math.univ-lyon1.fr
Annette Werner
Affiliation:
Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 6–8, D-60325 Frankfurt a.M., Germany email werner@math.uni-frankfurt.de

Abstract

We show that the automorphism group of Drinfeld’s half-space over a finite field is the projective linear group of the underlying vector space. The proof of this result uses analytic geometry in the sense of Berkovich over the finite field equipped with the trivial valuation. We also take into account extensions of the base field.

Type
Research Article
Copyright
© The Author(s) 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, G., Automorphisms of products of Drinfeld half planes, unpublished paper (2006).Google Scholar
Berkovich, V., Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, vol. 33 (American Mathematical Society, Providence, RI, 1990).Google Scholar
Berkovich, V., The automorphism group of the Drinfeld half-plane, C. R. Acad. Sci. Paris 321 (1995), 11271132.Google Scholar
Berkovich, V., Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), 184.CrossRefGoogle Scholar
Dat, J.-F., Orlik, S. and Rapoport, M., Period domains over finite and p-adic fields, Cambridge Tracts in Mathematics, vol. 183 (Cambridge University Press, Cambridge, 2010).Google Scholar
Drinfeld, V. G., Elliptic modules, Math. USSR Sb. 23 (1974), 561592.CrossRefGoogle Scholar
Grothendieck, A., Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Publ. Math. Inst. Hautes Études Sci. 20, 24, 28, 32 (1964–1967).CrossRefGoogle Scholar
Fulton, W., Intersection theory, second edition (Springer, Berlin, 1997).Google Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977).Google Scholar
Orlik, S., The cohomology of period domains for reductive groups over finite fields, Ann. Sci. Éc. Norm. Supér. 34 (2001), 6377.Google Scholar
Orlik, S. and Rapoport, M., Deligne–Lusztig varieties and period domains over finite fields, J. Algebra 320 (2008), 12201234.Google Scholar
Rapoport, M., Period domains over finite and local fields, in Algebraic geometry (Santa Cruz 1995), Proceedings of Symposia in Pure Mathematics, vol. 62, part 1 (American Mathematical Society, Providence, RI, 1997), 361381.Google Scholar
Rapoport, M. and Zink, T., Period spaces for p-divisible groups (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Thuillier, A., Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), 381451.CrossRefGoogle Scholar