Published online by Cambridge University Press: 21 December 2015
For positive integers n and q and a monotone graph property $\mathcal{A}$ , we consider the two-player, perfect information game WC(n, q,
$\mathcal{A}$ ), which is defined as follows. The game proceeds in rounds. In each round, the first player, called Waiter, offers the second player, called Client, q + 1 edges of the complete graph Kn which have not been offered previously. Client then chooses one of these edges which he keeps and the remaining q edges go back to Waiter. If, at the end of the game, the graph which consists of the edges chosen by Client satisfies the property
$\mathcal{A}$ , then Waiter is declared the winner; otherwise Client wins the game. In this paper we study such games (also known as Picker–Chooser games) for a variety of natural graph-theoretic parameters, such as the size of a largest component or the length of a longest cycle. In particular, we describe a phase transition type phenomenon which occurs when the parameter q is close to n and is reminiscent of phase transition phenomena in random graphs. Namely, we prove that if q ⩾ (1 + ϵ)n, then Client can avoid components of order cϵ−2 ln n for some absolute constant c > 0, whereas for q ⩽ (1 − ϵ)n, Waiter can force a giant, linearly sized component in Client's graph. In the second part of the paper, we prove that Waiter can force Client's graph to be pancyclic for every q ⩽ cn, where c > 0 is an appropriate constant. Note that this behaviour is in stark contrast to the threshold for pancyclicity and Hamiltonicity of random graphs.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.