No CrossRef data available.
Published online by Cambridge University Press: 15 October 2018
In this paper, by using operator-valued ${\dot{C}}^{\unicode[STIX]{x1D6FC}}$-Fourier multiplier results on vector-valued Hölder continuous function spaces, we give a characterization of the $C^{\unicode[STIX]{x1D6FC}}$-well-posedness for the third order differential equations $au^{\prime \prime \prime }(t)+u^{\prime \prime }(t)=Au(t)+Bu^{\prime }(t)+f(t)$, ($t\in \mathbb{R}$), where $A,B$ are closed linear operators on a Banach space $X$ such that $D(A)\subset D(B)$, $a\in \mathbb{C}$ and $0<\unicode[STIX]{x1D6FC}<1$.
This work was supported by the NSF of China (Grants No. 11571194, 11731010, 11771063), the Natural Science Foundation of Chongqing (cstc2017jcyjAX0006, cstc2016jcyjA0116), Science and Technology Project of Chongqing Education Committee (Grants No. KJ1703041, KJZDM201800501, KJ16003162016), the University Young Core Teacher Foundation of Chongqing (020603011714), Talent Project of Chongqing Normal University (Grant No. 02030307-00024). Gang Cai is corresponding author.