Hostname: page-component-68c7f8b79f-gx2m9 Total loading time: 0 Render date: 2025-12-20T06:16:03.535Z Has data issue: false hasContentIssue false

Polynomial invariants for three-dimensional Leibniz algebras

Published online by Cambridge University Press:  25 November 2025

Ivan Kaygorodov*
Affiliation:
University of Beira Interior, Portugal
Artem Lopatin
Affiliation:
Universidade Estadual de Campinas (UNICAMP), Brazil e-mail: dr.artem.lopatin@gmail.com

Abstract

For each three-dimensional non-Lie Leibniz algebra over the complex numbers, we describe the algebra of polynomial invariants and determine its group of automorphisms. As a consequence, we establish that any two non-nilpotent three-dimensional non-Lie Leibniz algebras can be distinguished by the traces of degrees $\leqslant 2$ and by the dimensions of their automorphism groups.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work is supported by the FCT 2023.08031.CEECIND, UID/00212/2025, and FAPESP 2023/17918-2.

References

Alvarez, M. A. and Lopatin, A., Polynomial invariants for low dimensional algebras. arXiv:2503.05337.Google Scholar
Ayupov, S., Khudoyberdiyev, A., and Shermatova, Z., On complete Leibniz algebras . Int. J. Algebra Comput. 32(2022), no. 2, 265288. https://doi.org/10.1142/S0218196722500138Google Scholar
Bloh, A., On a generalization of the concept of Lie algebra . Soviet Math. Dokl. 6(1965), 14501452.Google Scholar
Bonezzi, R. and Hohm, O., Leibniz gauge theories and infinity structures . Commun. Math. Phys. 377(2020), no. 3, 20272077. https://doi.org/10.1007/s00220-020-03785-2 Google Scholar
Casas, J., Insua, M., Ladra, M., and Ladra, S., An algorithm for the classification of 3-dimensional complex Leibniz algebras . Linear Algebra Appl. 436(2012), no. 9, 37473756. https://doi.org/10.1016/j.laa.2011.11.039 Google Scholar
Choriyeva, I. and Khudoyberdiyev, A., Classification of five-dimensional symmetric Leibniz algebras . Bull. Iranian Math. Soc. 50(2024), no. 3, 33. https://doi.org/10.1007/s41980-024-00874-z Google Scholar
de Mello, T. C. and S. Souza, M., Polynomial identities and images of polynomials on null-filiform Leibniz algebras . Linear Algebra Appl. 679(2023), 246260. https://doi.org/10.1016/j.laa.2023.09.016 Google Scholar
Diniz, D., Gonçalves, D. J., da Silva, V. R. T., and Souza, M., The isomorphism problem in the context of PI-theory for two-dimensional Jordan algebras . Finite Fields Appl. 94(2024), Article no. 102344. https://doi.org/10.1016/j.ffa.2023.102344 Google Scholar
Domokos, M., Kuzmin, S., and Zubkov, A., Rings of matrix invariants in positive characteristic . J. Pure Appl. Algebra 176(2002), 6180. https://doi.org/10.1016/S0022-4049(02)00117-2 Google Scholar
Donkin, S., Invariants of several matrices . Invent. Math. 110(1992), 389401. https://doi.org/10.1007/BF01231338 Google Scholar
dos Santos, I. F., Kuz’min, A. M., and Lopatin, A., Novikov algebras in low dimension: identities, images and codimensions . J. Algebra 674(2025), 128. https://doi.org/10.1016/j.jalgebra.2025.03.015 Google Scholar
Drensky, V. and Sadikova, L., Generators of invariants of two $4\times 4$ matrices . C. R. Acad. Bulgare Sci. 59(2006), no. 5, 477484.Google Scholar
Ɖoković, D., Poincaré series of some pure and mixed trace algebras of two generic matrices . J. Algebra 309(2007), 654671. https://doi.org/10.1016/j.jalgebra.2006.09.018 Google Scholar
Fehlberg, R. Jr., Kaygorodov, I., and Saydaliyev, A., The geometric classification of symmetric Leibniz algebras . Commun. Math. 33(2025), no. 1, Article no. 10.Google Scholar
Feldvoss, J. and Wagemann, F., On the cohomology of solvable Leibniz algebras . Indag. Math. (N.S.) 35(2024), no. 1, 87113. https://doi.org/10.1016/j.indag.2023.09.002 Google Scholar
Gubeladze, J. and Bruns, W.. Polytopes, rings, and K-theory, Springer Monographs in Mathematics, 2009. https://link.springer.com/book/10.1007/b105283Google Scholar
Iltyakov, A., On invariants of the group of automorphisms of Albert algebras . Commun. Algebra 23(1995), no. 11, 40474060. https://doi.org/10.1080/00927879508825448 Google Scholar
Kaygorodov, I., Non-associative algebraic structures: Classification and structure . Commun. Math. 32(2024), no. 3, 162. https://doi.org/10.46298/cm.11419 Google Scholar
Kaygorodov, I., Khrypchenko, M., and Páez-Guillán, P., The geometric classification of non-associative algebras: A survey . Commun. Math. 32(2024), no. 2, 185284. https://doi.org/10.46298/cm.14458 Google Scholar
Kaygorodov, I., Kudaybergenov, K., and Yuldashev, I., Local derivations of semisimple Leibniz algebras . Commun. Math. 30(2022), no. 2, 112. https://doi.org/10.46298/cm.9274 Google Scholar
Khudoyberdiyev, A. and Muratova, K., Solvable Leibniz superalgebras whose nilradical has the characteristic sequence $\left(n-1,1|m\right)$ and nilindex $n+m$ . Commun. Math. 32(2024), no. 2, 2754. https://doi.org/10.46298/cm.11369 Google Scholar
Kinyon, M. and Weinstein, A., Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces . Am. J. Math. 123(2001), no. 3, 525550. https://doi.org/10.1353/ajm.2001.0017 Google Scholar
Kotov, A. and Strobl, T., The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories . Commun. Math. Phys. 376(2020), no. 1, 235258. https://doi.org/10.1007/s00220-019-03569-3 Google Scholar
Loday, J.-L., A noncommutative version of Lie algebras: the Leibniz algebras . Enseign. Math. 39(1993), nos. 3–4, 269293.Google Scholar
Loday, J.-L. and Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology . Math. Ann. 296(1993), no. 1, 139158. https://doi.org/10.1007/BF01445099 Google Scholar
Lopatin, A., The algebra of invariants of $3\times 3$ matrices over a field of arbitrary characteristic . Commun. Algebra 32(2004), no. 7, 28632883. https://doi.org/10.1081/AGB-120037420 Google Scholar
Lopatin, A., The invariant ring of triples of $3\times 3$ matrices over a field of arbitrary characteristic . Sib. Math. J. 45(2004), no. 3, 513521. https://doi.org/10.1023/B:SIMJ.0000028616.88011 Google Scholar
Lopatin, A., Relatively free algebras with the identity ${x}^3=0$ . Commun. Algebra 33(2005), no. 10, 35833605. https://doi.org/10.1080/00927870500243254 Google Scholar
Lopatin, A. and Zubkov, A. N.. Separating ${G}_2$ -invariants of several octonions . Algebra Number Theory 18(2024), no. 12, 21572177, https://doi.org/10.2140/ant.2024.18.2157 Google Scholar
Lopatin, A. and Zubkov, A. N., Classification of ${G}_2$ -orbits for pairs of octonions . J. Pure Appl. Algebra 229(2025), 107875. https://doi.org/10.1016/j.jpaa.2025.107875 Google Scholar
Mondal, B. and Saha, R., Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras . Commun. Math. 30(2022), no. 2, 93117. https://doi.org/10.46298/cm.10295 Google Scholar
Polikarpov, S., Free affine Albert algebras . Sib. Math. J. 32(1991), no. 6, 10081016. https://doi.org/10.1007/BF00971207 Google Scholar
Procesi, C., The invariant theory of $n\times n$ matrices . Adv. Math. 19(1976), 306381. https://doi.org/10.1016/0001-8708(76)90027-X Google Scholar
Procesi, C., Computing with $2\times 2$ matrices . J. Algebra 87(1984), 342359. https://doi.org/10.1016/0021-8693(84)90141-8 Google Scholar
Rikhsiboev, I. M. and Rakhimov, I. S., Classification of three dimensional complex Leibniz algebras . AIP Conf. Proc. 1450(2012), 358362. https://doi.org/10.1063/1.4724168 Google Scholar
Schwarz, G., Invariant theory of $\mathrm{G}_2$ and $\mathrm{Spin}_7$ . Comment. Math. Helvetici. 63(1988), 624663. https://doi.org/10.1007/BF02566782 Google Scholar
Sibirskii, K., Algebraic invariants of a system of matrices . Sibirsk. Mat. Z. 9(1968), 152164.Google Scholar
Strobl, T. and Wagemann, F., Enhanced Leibniz algebras: structure theorem and induced Lie 2-algebra . Commun. Math. Phys. 376(2020), no. 1, 5179. https://doi.org/10.1007/s00220-019-03522-4 Google Scholar
Tang, R., Xu, N., and Sheng, Y., Symplectic structures, product structures and complex structures on Leibniz algebras . J. Algebra 647(2024), 710743. https://doi.org/10.1016/j.jalgebra.2024.03.003 Google Scholar
Teranishi, Y., The ring of invariants of matrices . Nagoya Math. J. 104(1986), 149161. https://doi.org/10.1017/S0027763000022728 Google Scholar
Weyl, H., The classical groups. Their invariants and representations, Princeton University Press, 1939.Google Scholar
Zubkov, A. N. and Shestakov, I., Invariants of $\mathrm{G}_2$ and $\mathrm{Spin}(7)$ in positive characteristic . Transform. Groups 23(2018), no. 2, 555588. https://doi.org/10.1007/s00031-017-9435-8 Google Scholar