Hostname: page-component-7dd5485656-2pp2p Total loading time: 0 Render date: 2025-10-22T14:36:21.290Z Has data issue: false hasContentIssue false

On moments of L-functions over Dirichlet characters

Published online by Cambridge University Press:  19 September 2025

Avery Bainbridge
Affiliation:
Department of Mathematical Sciences, University of Texas at Dallas , Richardson, TX 75080, United States e-mail: Avery.Bainbridge@UTDallas.edu ZeSen.Tang@UTDallas.edu
Rizwanur Khan*
Affiliation:
Department of Mathematical Sciences, University of Texas at Dallas , Richardson, TX 75080, United States e-mail: Avery.Bainbridge@UTDallas.edu ZeSen.Tang@UTDallas.edu
Ze Sen Tang
Affiliation:
Department of Mathematical Sciences, University of Texas at Dallas , Richardson, TX 75080, United States e-mail: Avery.Bainbridge@UTDallas.edu ZeSen.Tang@UTDallas.edu

Abstract

We give a new proof of Heath-Brown’s full asymptotic expansion for the second moment of Dirichlet L-functions and we obtain a corresponding asymptotic expansion for a twisted first moment of Hecke–Maass L-functions.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The second and third authors were supported by the National Science Foundation grants DMS-2344044 and DMS-2341239.

References

Bettin, S., On the reciprocity law for the twisted second moment of Dirichlet $L$ -functions . Trans. Am. Math. Soc. 368(2016), no. 10, 68876914.Google Scholar
Blomer, V., Fouvry, É., Kowalski, E., Michel, P., and Milićević, D., Some applications of smooth bilinear forms with Kloosterman sums . Tr. Mat. Inst. Steklova. 296(2017), 2435. English version published in Proc. Steklov Inst. Math. 296 (2017), no. 1, 18–29.Google Scholar
Blomer, V., Khan, R., and Young, M., Distribution of mass of holomorphic cusp forms . Duke Math. J. 162(2013), no. 14, 26092644.Google Scholar
Conrey, J. B., The mean-square of Dirichlet $L$ -functions. Preprint, arXiv:0708.2699.Google Scholar
Drappeau, S. and Nordentoft, A. C., Central values of additive twists of Maaß forms $L$ -functions. Preprint, arXiv:2208.14346.Google Scholar
Egami, S. and Matsumoto, K., Asymptotic expansions of multiple zeta functions and power mean values of Hurwitz zeta functions . J. London Math. Soc. (2) 66(2002), no. 1, 4160.Google Scholar
Goldfeld, D., Automorphic forms and  $L$ -functions for the group $GL\left(n,\mathbf{R}\right)$ , Cambridge Studies in Advanced Mathematics, 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products. 8th ed., Elsevier/Academic Press, Amsterdam, 2015. Translated from the Russian.Google Scholar
Heath-Brown, D. R., An asymptotic series for the mean value of Dirichlet $L$ -functions . Comment. Math. Helv. 56(1981), no. 1, 148161.Google Scholar
Heath-Brown, D. R., The fourth power mean of Dirichlet’s $L$ -functions . Analysis 1(1981), no. 1, 2532.Google Scholar
Katsurada, M. and Matsumoto, K., Asymptotic expansions of the mean values of Dirichlet $L$ -functions . Math. Z. 208(1991), no. 1, 2339.Google Scholar
Kim, H. H., Functoriality for the exterior square of $\mathrm{GL}_4$ and the symmetric fourth of $\mathrm{GL}_2$ , J. Am. Math. Soc. 16(2003), no. 1, 139183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak.Google Scholar
Nordentoft, A. C., A note on additive twists, reciprocity laws and quantum modular forms . Ramanujan J. 56(2021), no. 1, 151162.Google Scholar
Nordentoft, A. C., Wide moments of $L$ -functions II: Dirichlet $L$ -functions . Q. J. Math. 74(2023), no. 1, 365387.Google Scholar
Rademacher, H., On the Phragmén-Lindelöf theorem and some applications . Math. Z. 72(1959/1960), 192204.Google Scholar
Titchmarsh, E. C., The theory of the Riemann zeta-function. 2nd ed., The Clarendon Press, Oxford University Press, New York, NY, 1986. Edited and with a preface by D. R. Heath-Brown.Google Scholar
Wong, R., Asymptotic approximations of integrals, Academic Press, New York, NY, 1989. Reprinted by SIAM, Philadelphia, 2001.Google Scholar
Young, M. P., The fourth moment of Dirichlet $L$ -functions . Ann. Math. 173(2011), no. 1, 150.Google Scholar
Young, M. P., The reciprocity law for the twisted second moment of Dirichlet $L$ -functions . Forum Math. 23(2011), no. 6, 13231337.Google Scholar