Published online by Cambridge University Press: 09 January 2019
We bring examples of toric varieties blown up at a point in the torus that do not have finitely generated Cox rings. These examples are generalizations of our earlier work, where toric surfaces of Picard number 1 were studied. In this article we consider toric varieties of higher Picard number and higher dimension. In particular, we bring examples of weighted projective 3-spaces blown up at a point that do not have finitely generated Cox rings.
The first author was supported by the UCR Academic Senate. The second author was supported by a NSERC Discovery grant.