Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T04:04:47.869Z Has data issue: false hasContentIssue false

Coefficient Multipliers of Bergman Spaces Ap, II

Published online by Cambridge University Press:  20 November 2018

Zengjian Lou*
Affiliation:
Institute of mathematics, Academia Sinica, Beijing 100080, People’s Republic of China, e-mail: zjlou@math03.math.ac.cn Department of Mathematics, Qufu Normal University, Qufu Shandong, 273165, People’s Republic of China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the multiplier space , where X is BMOA, VMOA, B, B0 or disk algebra A. We give the multipliers from , we also give the multipliers from , C0, BMOA, and Hp.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Ahern, P. and Jevtić, M., Duality and multipliers for mixed norm spaces.MichiganMath. J. 30 (1983), 5364.Google Scholar
2. Anderson, J. M., Clunie, J. and Pommerenke, Ch., On Bloch functions and normal functions. J. Reine Angew. Math. 270 (1974), 1237.Google Scholar
3. Anderson, J. M. and Shields, A. L., Coefficient multipliers of Bloch functions. Trans. Amer. Math. Soc. 224 (1976), 255265.Google Scholar
4. Campbell, D. M. and Leach, R. J., A survey of Hp multipliers as related to classical function theory. Complex Variables 3 (1984), 85111.Google Scholar
5. Duren, P. L., Theory of Hp spaces, Academic Press, New York, 1970.Google Scholar
6. Flett, T. M., The dual of inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 38 (1972), 746765.Google Scholar
7. Garnett, J. B., Bounded analytic functions. Academic Press, New York, 1981.Google Scholar
8. Kellogg, C. N., An extension of Hausdorff-Young theorem. Michigan Math. J. 18 (1971), 121127.Google Scholar
9. Kim, Y., Coefficient multipliers of Hp and Gp spaces. Math. Japon. 30 (1985), 671679.Google Scholar
10. Kwon, E. G., A note on the coefficient of mixed norm spaces. Bull. Austral. Math. Soc. 33 (1986), 421426.Google Scholar
11. Lou, Z. J., Multipliers of Hp, Gp and Bloch spaces. Math. Japon. 36 (1991), 2126.Google Scholar
12. Lou, Z. J., Coefficient multipliers of Bergman spaces Ap. Complex Variables, to appear.Google Scholar
13. MacGregor, T. and Zhu, K., Coefficient multipliers between Hardy and Bergman spaces. State University of New York, Albany, preprint, 1992.Google Scholar
14. Mateljević, M. and Pavlović, M., Multipliers of Hp and BMOA. Pacific J. Math. 146 (1990), 7184.Google Scholar
15. Shapiro, J., Thesis, University of Michigan, 1969.Google Scholar
16. Shi, J. H., On the rate of growth of the means Mg of holomorphic and pluriharmonic functions on bounded symmetric domains of Cn. J. Math. Anal. Appl. 126 (1987), 161175.Google Scholar
17. Taibleson, M. H., On the theory of Lipschitz spaces of distributions on Euclidean n-space II. J. Appl. Math. Mech. 14 (1965), 821839.Google Scholar
18. Vukotić, D., On the coefficient multipliers of Bergman spaces. J. LondonMath. Soc. (2) 50 (1994), 341348.Google Scholar
19. Wojtaszczyk, P., On multipliers into Bergman spaces and Nevanlinna class. Canad. Math. Bull. 33 (1990), 151161.Google Scholar
20. Zhu, K., Operator theory in function spaces, Marcel Dekker, Inc., New York and Basel, 1990.Google Scholar
21. Zygmund, A., Trigonometric series, 2nd. rev. ed. Cambridge Univ. Press, New York, 1959.Google Scholar