Hostname: page-component-7dd5485656-j7khd Total loading time: 0 Render date: 2025-10-27T06:04:44.299Z Has data issue: false hasContentIssue false

Sobolev regularity of the Bergman projection on a class of singular Reinhardt domains

Published online by Cambridge University Press:  22 September 2025

Shuo Zhang*
Affiliation:
College of Science, Tianjin University of Technology , Tianjin 300384, China

Abstract

In this article, we study the $L^p$ Sobolev regularity of the Bergman projection on monomial polyhedra, which are a wide class of bounded singular Reinhardt domains defined as sublevel sets of holomorphic monomials. This work generalizes the previous results of Sobolev regularity of the Bergman projection on various special singular Reinhardt domains.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12401102 and 12271350) and the Natural Science Foundation of Tianjin Municipality (Grant No. 24JCQNJC00410).

References

Bender, C., Chakrabarti, D., Edholm, L., and Mainkar, M., ${L}^p$ regularity of the Bergman projection on quotient domains . Can. J. Math. 74(2022), 732772.Google Scholar
Chakrabarti, D., On an observation of Sibony . Proc. Am. Math. Soc. 147(2019), 34513454.Google Scholar
Chakrabarti, D., Cinzori, I., Gaidhane, I., Gregory, J., and Wright, M., Bergman kernels of monomial polyhedra . J. Math. Anal. Appl. 531(2024), 127723, 28 pp.Google Scholar
Chakrabarti, D., Tang, Y., and Zhang, S., Toeplitz operators on monomial polyhedra . Ann. Mat. 204(2024), 543571. https://doi.org/10.1007/s10231-024-01495-3 Google Scholar
Charpentier, P. and Dupain, Y., Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form . Publ. Mat. 50(2006), 413446.Google Scholar
Charpentier, P., Dupain, Y., and Mounkaila, M., On estimates for weighted Bergman projections . Proc. Am. Math. Soc. 143(2015), 53375352.Google Scholar
Chen, L., Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle . Pac. J. Math. 288(2017), 307318.Google Scholar
Chen, L., Jin, M., and Yuan, Y., Bergman projection on the symmetrized bidisk . J. Geom. Anal. 33(2023), Article no. 204, 15 pp.Google Scholar
Edholm, L. D. and McNeal, J. D., The Bergman projection on fat Hartogs triangles: ${L}^p$ boundedness. Proc. Am. Math. Soc. 144(2016), 21852196.Google Scholar
Edholm, L. D. and McNeal, J. D., Bergman subspaces and subkernels: Degenerate ${L}^p$ mapping and zeroes. J. Geom. Anal. 27(2017), 26582683.Google Scholar
Edholm, L. D. and McNeal, J. D., Sobolev mapping of some holomorphic projections . J. Geom. Anal. 30(2020), 12931311.Google Scholar
Khanh, T. V., Liu, J., and Thuc, P. T., Bergman-Toeplitz operators on weakly pseudoconvex domains . Math. Z. 291(2019), 591607.Google Scholar
Khanh, T. V., Liu, J., and Thuc, P. T., Bergman-Toeplitz operators on fat Hartogs triangles . Proc. Am. Math. Soc. 147(2019), 327338.Google Scholar
Liu, H. and Tu, Z., Sobolev mapping of the Bergman projections on generalized Hartogs triangles . Acta Math. Sin. (Engl. Ser.) 40(2024), 451466.Google Scholar
McNeal, J. D., Boundary behavior of the Bergman kernel function in ${\mathbb{C}}^2$ . Duke Math. J. 58(1989), 499512.Google Scholar
McNeal, J. D., Local geometry of decoupled pseudoconvex domains. Complex analysis (Wuppertal, 1991), Aspects of Mathematics, E17, Friedrich Vieweg, Braunschweig, 1991, pp. 223230.Google Scholar
McNeal, J. D., Estimates on the Bergman kernels of convex domains . Adv. Math. 109(1994), 108139.Google Scholar
Nagel, A., Rosay, J.-P., Stein, E. M., and Wainger, S., Estimates for the Bergman and Szegö kernels in ${\mathbb{C}}^2$ . Ann. Math. 129(1989), 113149.Google Scholar
Phong, D. H. and Stein, E. M., Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains . Duke Math. J. 44(1977), 695704.Google Scholar
Tang, Y. and Zhang, S., Special Toeplitz operators on elementary Reinhardt domains . Compl. Anal. Oper. Theory. 16(2022), 49, 23 pp.Google Scholar
Zhang, S., Mapping properties of the Bergman projections on elementary Reinhardt domains . Math. Slovaca 71(2021), 831844.Google Scholar
Zhang, S., ${L}^p$ Sobolev mapping properties of the Bergman projections on n-dimensional generalized Hartogs triangles . Bull. Korean Math. Soc. 58(2021), 13551375.Google Scholar