Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:24:24.622Z Has data issue: false hasContentIssue false

Operator noncommutative functions

Published online by Cambridge University Press:  24 May 2022

Meric Augat*
Affiliation:
Washingston University in St. Louis, St. Louis, MO, USA e-mail: mccarthy@wustl.edu
John E. McCarthy
Affiliation:
Washingston University in St. Louis, St. Louis, MO, USA e-mail: mccarthy@wustl.edu
*

Abstract

We establish a theory of noncommutative (NC) functions on a class of von Neumann algebras with a particular direct sum property, e.g., $B({\mathcal H})$ . In contrast to the theory’s origins, we do not rely on appealing to results from the matricial case. We prove that the $k{\mathrm {th}}$ directional derivative of any NC function at a scalar point is a k-linear homogeneous polynomial in its directions. Consequences include the fact that NC functions defined on domains containing scalar points can be uniformly approximated by free polynomials as well as realization formulas for NC functions bounded on particular sets, e.g., the NC polydisk and NC row ball.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by the National Science Foundation Grant DMS 2054199.

References

Agler, J. and McCarthy, J. E., Global holomorphic functions in several non-commuting variables . Can. J. Math. 67(2015), no. 2, 241285.CrossRefGoogle Scholar
Agler, J. and McCarthy, J. E., Non-commutative holomorphic functions on operator domains . European J. Math. 1(2015), no. 4, 731745.CrossRefGoogle ScholarPubMed
Agler, J., McCarthy, J. E., and Young, N. J., Operator analysis: Hilbert space methods in complex analysis, Cambridge Tracts in Mathematics, 219, Cambridge University Press, Cambridge, 2020.CrossRefGoogle Scholar
Augat, M., Free potential functions. Preprint, 2020. https://arxiv.org/pdf/2005.01850.pdf Google Scholar
Ball, J. A., Marx, G., and Vinnikov, V., Noncommutative reproducing kernel Hilbert spaces . J. Funct. Anal. 271(2016), no. 7, 18441920.CrossRefGoogle Scholar
Helton, J. W., Klep, I., and McCullough, S., Analytic mappings between noncommutative pencil balls . J. Math. Anal. Appl. 376(2011), no. 2, 407428.CrossRefGoogle Scholar
Helton, J. W., Klep, I., and McCullough, S., Proper analytic free maps . J. Funct. Anal. 260(2011), no. 5, 14761490.CrossRefGoogle Scholar
Helton, J. W., Klep, I., and McCullough, S., Free analysis, convexity and LMI domains . In: Mathematical methods in systems, optimization, and control , Operator Theory: Advances and Applications, 222, Springer, Basel, 2012, pp. 195219.CrossRefGoogle Scholar
Helton, J. W., Klep, I., and McCullough, S., The tracial Hahn–Banach theorem, polar duals, matrix convex sets, and projections of free spectrahedra . J. Eur. Math. Soc. (JEMS) 19(2017), no. 6, 18451897.CrossRefGoogle Scholar
Helton, J. W. and McCullough, S. A., A Positivstellensatz for non-commutative polynomials . Trans. Amer. Math. Soc. 356(2004), no. 9, 37213737 (electronic).CrossRefGoogle Scholar
Ji, Z., Natarajan, A., Vidick, T., Wright, J., and Yuen, H., MIP* = RE. Preprint, 2020. arXiv:2001.04383 CrossRefGoogle Scholar
Jury, M., Klep, I., Mancuso, M. E., McCullough, S., and Pascoe, J. E., Noncommutative partial convexity via $\varGamma$ -convexity . J. Geom. Anal. 31(2021), no. 3, 31373160.CrossRefGoogle Scholar
Jury, M. T. and Martin, R. T. W., Operators affiliated to the free shift on the free hardy space . J. Funct. Anal. 277(2019), no. 12, Article no. 108285, 39 pp.CrossRefGoogle Scholar
Jury, M. T. and Martin, R. T. W., Column extreme multipliers of the free hardy space . J. Lond. Math. Soc. (2) 101(2020), no. 2, 457489.CrossRefGoogle Scholar
Jury, M. T., Martin, R. T. W., and Shamovich, E., Blaschke-singular-outer factorization of free non-commutative functions . Adv. Math. 384(2021), Article no. 107720, 42 pp.CrossRefGoogle Scholar
Kaliuzhnyi-Verbovetskyi, D. S. and Vinnikov, V., Foundations of free non-commutative function theory, American Mathematical Society, Providence, RI, 2014.Google Scholar
Klep, I. and Schweighofer, M., Connes’ embedding conjecture and sums of Hermitian squares . Adv. Math. 217(2008), no. 4, 18161837.CrossRefGoogle Scholar
Klep, I. and Spenko, S., Free function theory through matrix invariants . Can. J. Math. 69(2017), no. 2, 408433.CrossRefGoogle Scholar
Mancuso, M. E., Inverse and implicit function theorems for noncommutative functions on operator domains . J. Operator Theory 83(2020), no. 2, 447473.CrossRefGoogle Scholar
Pascoe, J. E. and Tully-Doyle, R., Cauchy transforms arising from homomorphic conditional expectations parametrize noncommutative pick functions . J. Math. Anal. Appl. 472(2019), no. 2, 14871498.CrossRefGoogle Scholar
Procesi, C., The invariant theory of $n\times n$ matrices . Adv. Math. 19(1976), no. 3, 306381.CrossRefGoogle Scholar
Rudin, W., Functional analysis, McGraw-Hill, New York, 1991.Google Scholar
Salomon, G., Shalit, O. M., and Shamovich, E., Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball . Trans. Amer. Math. Soc. 370(2018), no. 12, 86398690.CrossRefGoogle Scholar
Salomon, G., Shalit, O. M., and Shamovich, E., Algebras of noncommutative functions on subvarieties of the noncommutative ball: the bounded and completely bounded isomorphism problem . J. Funct. Anal. 278(2020), no. 7, Article no. 108427, 54 pp.CrossRefGoogle Scholar
Taylor, J. L., A general framework for a multi-operator functional calculus . Adv. Math. 9(1972), 183252.CrossRefGoogle Scholar
Taylor, J. L., Functions of several noncommuting variables . Bull. Amer. Math. Soc. 79(1973), 134.CrossRefGoogle Scholar
Voiculescu, D., Free analysis questions I: duality transform for the coalgebra of ∂_(X:B) . Int. Math. Res. Not. IMRN 2004(2004), no. 16, 793822.CrossRefGoogle Scholar
Voiculescu, D.-V., Free analysis questions II: the Grassmannian completion and the series expansions at the origin . J. Reine Angew. Math. 645(2010), 155236.Google Scholar