Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-08-23T07:16:36.579Z Has data issue: false hasContentIssue false

Hook length inequalities for t-regular partitions in the t-aspect

Published online by Cambridge University Press:  24 July 2025

Gurinder Singh
Affiliation:
Department of Mathematics, https://ror.org/0022nd079 Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India e-mail: gurinder.singh@iitg.ac.in
Rupam Barman*
Affiliation:
Department of Mathematics, https://ror.org/0022nd079 Indian Institute of Technology Guwahati , Guwahati, Assam 781039, India e-mail: gurinder.singh@iitg.ac.in
*

Abstract

Let $t\geq 2$ and $k\geq 1$ be integers. A t-regular partition of a positive integer n is a partition of n such that none of its parts is divisible by t. Let $b_{t,k}(n)$ denote the number of hooks of length k in all the t-regular partitions of n. In this article, we prove some inequalities for $b_{t,k}(n)$ for fixed values of k. We prove that for any $t\geq 2$, $b_{t+1,1}(n)\geq b_{t,1}(n)$, for all $n\geq 0$. We also prove that $b_{3,2}(n)\geq b_{2,2}(n)$ for all $n>3$, and $b_{3,3}(n)\geq b_{2,3}(n)$ for all $n\geq 0$. Finally, we state some problems for future works.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amdeberhan, T., Andrews, G. E., Ono, K., and Singh, A., Hook lengths in self-conjugate partitions . Proc. Amer. Math. Soc. Ser. B 11(2024), 345357.Google Scholar
Ballantine, C., Burson, H. E., Craig, W., Folsom, A., and Wen, B., Hook length biases and general linear partition inequalities . Res. Math. Sci. 10(2023), 41.Google Scholar
Craig, W., Dawsey, M. L., and Han, G.-N., Inequalities and asymptotics for hook numbers in restricted partitions, preprint. arXiv:2311.15013.Google Scholar
Garvan, F., Kim, D., and Stanton, D., Cranks and t-cores . Invent. Math. 101(1990), 118.Google Scholar
Han, G.-N. and Xiong, H., New hook-content formulas for strict partitions . In: 28th international conference on formal power series and algebraic combinatorics (FPSAC 2016), Discrete Mathematics and Theoretical Computer Science Proceedings, 2016, pp. 635645.Google Scholar
Han, G.-N. and Xiong, H., New hook-content formulas for strict partitions . J. Algebraic Comb. 45(2017), no. 4, 10011019.Google Scholar
James, G. and Kerber, A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, MA, 1981.Google Scholar
Li, R. and Wang, A. Y. Z., Partitions associated with two fifth order mock theta functions and Beck type identities . Int. J. Number Theory 16(2020), no. 4, 841855.Google Scholar
Littlewood, D. E., Modular representations of symmetric groups . Proc. R. Soc. Lond. Ser. A 209(1951), 333353.Google Scholar
Nekrasov, N. A. and Okounkov, A., Seiberg-Witten theory and random partitions . In: The unity of mathematics, Progress in Mathematics, 244, Birkhäuser, Boston, MA, 2006, pp. 525596.Google Scholar
Pétréolle, M., Quelques développements combinatoires autour des groupes de Coxeter et des partitions d’entiers. Ph. Thesis, Université Claude Bernard—Lyon I, 2015.Google Scholar
Singh, G. and Barman, R., Hook length biases in ordinary and $t$ -regular partitions . J. Number Theory 264(2024), 4158.Google Scholar
Stanley, R. P., Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999.Google Scholar