Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T10:44:00.021Z Has data issue: false hasContentIssue false

Group actions on local moduli space of holomorphic vector bundles

Published online by Cambridge University Press:  18 August 2022

An-Khuong Doan*
Affiliation:
IMJ-PRG, UMR 7586, Sorbonne Université, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli space.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchdahl, N. and Schumacher, G., An analytic application of geometric invariant theory. Preprint, 2021. arXiv:2008.04625CrossRefGoogle Scholar
Catanese, F., A superficial working guide to deformations and moduli . In: Handbook of moduli. Vol. I, Advanced Lectures in Mathematics, 24, International Press, Somerville, MA, 2013, pp. 161215.Google Scholar
Catanese, F., Topological methods in moduli theory. Bull. Math. Sci. 5(2015), 287449.CrossRefGoogle Scholar
Doan, A.-K., A counter-example to the equivariance structure on semi-universal deformation. J. Geom. Anal. 31(2021), 36983712.CrossRefGoogle Scholar
Doan, A.-K., Extensions of non-reductive group actions on semi-universal deformation. Preprint, 2021. arXiv:2108.04041Google Scholar
Doan, A.-K., Semi-propresentability of formal moduli problems and $G$ -equivariant structure. Preprint, 2021. arXiv:2107.09505Google Scholar
Doan, A.-K., Equivariant Kuranishi family of complex compact manifolds. Manuscripta Math. 167(2022), 793808.CrossRefGoogle Scholar
Douady, A., Le problème des modules pour les variétés analytiques complexes (d’après Masatake Kuranishi). In: Séminaire Bourbaki, Vol. 9, Exp. No. 277, Société Mathématique de France, Paris (1964), pp. 713.Google Scholar
Grauert, H., Über die deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15(1972), 171198.CrossRefGoogle Scholar
Hinich, V., DG coalgebras as formal stacks. J. Pure Appl. Algebra 162(2001), nos. 2–3, 209250.CrossRefGoogle Scholar
Kodaira, K., Complex manifolds and deformation of complex structures, Classics in Mathematics, English edn. Springer, Berlin, 2005.CrossRefGoogle Scholar
Kosarew, S., Local moduli spaces and Kuranishi maps . Manuscripta Math. 110(2003), 237249.CrossRefGoogle Scholar
Kuranishi, M., Deformations of compact complex manifolds, Les Presse de l’Université de Montréal, 1971.Google Scholar
Lurie, J., Derived Algebraic Geometry X: Formal Moduli Problems, 2011. Available at http://www.math.harvard.edu/~lurie/papers/DAG-X.pdf Google Scholar
Meersseman, L., Kuranishi and Teichmüller. Preprint, 2021. arXiv:1709.07237 Google Scholar
Miyajima, K., Kuranishi family of vector bundles and algebraic description of the moduli space of Einstein–Hermitian connections. Publ. Res. Inst. Math. Sci. 25(1989), 301320.CrossRefGoogle Scholar
Pridham, J. P., Unifying derived deformation theories . Adv. Math. 224(2010), no. 3, 772826.CrossRefGoogle Scholar
Rim, D. S., Equivariant $G$ -structure on versal deformations. Trans. Amer. Math. Soc. 257(1980), no. 1, 217226.Google Scholar
Schlessinger, M., Functors of Artin rings. Trans. Amer. Math. Soc. 130(1968), no. 2, 208222.CrossRefGoogle Scholar
Toën, B., Problèmes de modules formels. In: Séminaire Bourbaki. Vol. 2015/2016, 2016, pp. 11041119.Google Scholar