For each real number
$\xi$, let
$\widehat{{{\lambda }_{2}}}\left( \xi \right)$ denote the supremum of all real numbers
$\text{ }\!\!\lambda\!\!\text{ }$
such that, for each sufficiently large
$X$
, the inequalities
$\left| {{x}_{0}} \right|\,\le \,X,\,\left| {{x}_{0}}\xi \,-\,{{x}_{1}} \right|\,\le \,{{X}^{-\lambda \text{ }}}$ and
$\left| {{x}_{0}}{{\xi }^{2}}\,-\,{{x}_{2}} \right|\,\le \,{{X}^{-\lambda \text{ }}}$ admit a solution in integers
${{x}_{0}},\,{{x}_{1}}$ and
${{x}_{2}}$ not all zero, and let
$\widehat{{{\omega }_{2}}}\left( \xi \right)$ denote the supremum of all real numbers
$\omega $ such that, for each sufficiently large
$X$, the dual inequalities
$\left| {{x}_{0}}\,+\,{{x}_{1}}\xi \,+\,{{x}_{2}}{{\xi }^{2}} \right|\,\le \,{{X}^{-\omega }}$,
$\left| {{x}_{1}} \right|\,\le \,X$ and
$\left| {{x}_{2}} \right|\,\le \,X$ admit a solution in integers
${{x}_{0}},\,{{x}_{1}}$ and
${{x}_{2}}$ not all zero. Answering a question of Y. Bugeaud and M. Laurent, we show that the exponents
$\widehat{{{\lambda }_{2}}}\left( \xi \right)$ where
$\xi$ ranges through all real numbers with
$[\mathbb{Q}(\xi )\,:\mathbb{Q}]\,>\,2$ form a dense subset of the interval
$\left[ 1/2,\,\left( \sqrt{5}\,-\,1 \right)/2 \right]$ while, for the same values of
$\xi$, the dual exponents
$\widehat{{{\omega }_{2}}}\left( \xi \right)$ form a dense subset of
$\left[ 2,\,\left( \sqrt{5}\,+\,3 \right)/2 \right]$. Part of the proof rests on a result of V. Jarník showing that
$\widehat{{{\lambda }_{2}}}\left( \xi \right)=1-{{\hat{\omega }}_{2}}{{\left( \xi \right)}^{-1}}$ for any real number
$\xi$ with
$[\mathbb{Q}(\xi )\,:\mathbb{Q}]\,>\,2$.