Published online by Cambridge University Press: 20 November 2018
In the finite von Neumann algebra setting, we introduce the concept of a perturbation determinant associated with a pair of self-adjoint elements ${{H}_{0}}$ and
$H$ in the algebra and relate it to the concept of the de la Harpe–Skandalis homotopy invariant determinant associated with piecewise
${{C}^{1}}$-paths of operators joining
${{H}_{0}}$ and
$H$. We obtain an analog of Krein's formula that relates the perturbation determinant and the spectral shift function and, based on this relation, we derive subsequently (i) the Birman–Solomyak formula for a general non-linear perturbation, (ii) a universality of a spectral averaging, and (iii) a generalization of the Dixmier–Fuglede–Kadison differentiation formula.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.