Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:25:04.311Z Has data issue: false hasContentIssue false

Orthogonal Polynomials and Rational Modifications of Measures

Published online by Cambridge University Press:  20 November 2018

E. Godoy
Affiliation:
Universidadde Vigo Departamento de Matematica Aplicada Escuela Tecnica Superior de Ingenieros Industriales Apartado de Correos, No. 62 36280-VIGO Spain
F. Marcellan
Affiliation:
Universidad Carlos III de Madrid Escuela Politecnica Superior Avdadel Mediterraneo, s/n 28913 LEGANES Madrid Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a finite positive measure on the Borel subsets of the complex plane with compact support containing infinitely many points, we deduce some formulas for the sequence of monic orthogonal polynomials associated to a rational modification of the measure. These expressions depend on so called functions of the second kind. Some examples for particular Jordan curves are given

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

References

1. Delsarte, P. and Genin, Y., On the role of orthogonal polynomials on the unit circle in digital signal processing applications, Orthogonal Polynomials: Theory and Practice, (ed. Nevai, P.), NATO ASI (C) 294, Kluwer, Dordrecht, 1990. 115133.Google Scholar
2. Dini, J. and Maroni, P.,The product of a linear form by a rational fraction: Application to Laguerre-Hahn forms, Lecture Notes in Pure and Applied Mathematics 117, Orthogonal Polynomials and their Applications, (ed. Vinuesa, J.), Marcel Dekker, 1989. New York, 131138.Google Scholar
3. Gautschi, W., An algorithmic implementation of the Christoffel theorem. In: Numerical Integration, (ed. Hammerlin, G.), Birkhauser Basel, 1982. 89106.Google Scholar
4. Gautschi, W., Computational aspects of orthogonal polynomials, Orthogonal Polynomials: Theory and Practice, (ed. Nevai, P.), NATO ASI (C) 294, Kluwer, Dordrecht, 1990. 181216.Google Scholar
5. Genin, Y., On a duality in the theory of orthogonal polynomials and its application in signal processing, ICIAM ‘87, Proceedings of the first international conference on industrial and applied mathematics, SIAM, Philadelphia, (1988), 102113.Google Scholar
6. Godoy, E., Polinomios ortogonales asociados a modificaciones de medidas, Doctoral Dissertation, Univ. Santiago de Compostela, 1987.Google Scholar
7. Godoy, E. and Marcellan, F., Rational modifications ofBorel measures, Actas XII Jornadas Luso-Espanholas de Matemâtica 11(1987), 326330.Google Scholar
8. Godoy, E. and Marcellan, F., An analog of the Christoffel formula for polynomial modification of a measure on the unit circle, Boll. Un. Mat. Ital. (7) 5-A(1991), 112.Google Scholar
9. Golinskii, B.L., On the asymptotic behavior of the prediction error, Theory Prob. Appl. 19(1974), 693709.Google Scholar
10. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge University Press, 1985.Google Scholar
11. H, M.E.. Ismail and Ruedemann, R.W., Relation between polynomials orthogonal on the unit circle with respect to different weights, J. Approx. Theory 71(1992), 3960.Google Scholar
12. Kumar, R., A class of quadrature formulas, Math. Comp. (127) 28(1974), 769778.Google Scholar
13. Marcellan, F. and Moral, L., Propiedades asintôticas de los polinomios ortogonales sobre la lemniscata de Bernouilli, Actas del III Simposium sobre Polinomios Ortogonales y Aplicaciones, F. Marcellan Editor, Segovia (1985), 123133.Google Scholar
14. Paszkowski, S., Sur des Transformations d'une fonction de poids, Lecture Notes in Mathematics (1171), Polynômes Orthogonaux et Applications, (eds. Brezinski, C., et al), Proceedings, Bar-le-Duc, 1984. Springer-Verlag, 1985.239-246.Google Scholar
15. Szego, G., Orthogonal Polynomials, A.M.S., Colloquium Publications XXIII, fourth edition, second printing, Providence, Rhode Island, 1978.Google Scholar
16. Uvarov, V.B., The connection between systems of polynomials orthogonal with respect to different distribution functions, USSR Comp. Math, and Phys. (6) 9(1969), 2536.Google Scholar
17. Walsh, J., Interpolation and Approximation by Rational Functions in the Complex Plane, A.M.S., Colloquium Publications, Providence, Rhode Island, Fifth edition, 1969.Google Scholar