Published online by Cambridge University Press: 20 November 2018
If G = (G, τ) is a topological group with topology τ, then there is a smallest topology τ* ⊇ τ such that G* = (G, τ*) is a topological group with equal left and right uniformities (1). Bagley and Wu introduced this topology in (1), and studied the relationship between Gand G*. In this paper we prove some additional results concerning G* and groups with equal uniformities in general. The structure of locally compact groups with equal uniformities has been studied extensively. If G is a locally compact connected group, then G has equal uniformities if and only if G ≅ V× K,where F is a vector group and Kis a compact group (5). More generally, every locally compact group with equal uniformities has an open normal subgroup of the form V× K(4).