GROUPS WITH EQUAL UNIFORMITIES

R. T. RAMSAY*

If G = (G, 1) is a topological group with topology 7, then there is a smallest
topology 7* D 7 such that G* = (G, 7¥) is a topological group with equal left
and right uniformities (1). Bagley and Wu introduced this topology in (1),
and studied the relationship between G and G*. In this paper we prove some
additional results concerning G* and groups with equal uniformities in general.
The structure of locally compact groups with equal uniformities has been
studied extensively. If G is a locally compact connected group, then G has
equal uniformities if and only if G = V X K, where V is a vector group and
K is a compact group (5). More generally, every locally compact group with
equal uniformities has an open normal subgroup of the form V' X K (4).

Definition. If G = (G, 7) is a topological group with topology 7, and Z is a
neighbourhood base at the identity e in G, then G* = (G, 7*), where a neigh-
bourhood base at e for 7*is {N;ee ¢V V € B}. Welet V* denote M ;e t VE!
whenever 1 is a neighbourhood of ¢ in G.

It is easy to see that a group G has equal uniformities if and only if V*is a
neighbourhood of ¢ whenever V is a neighbourhood of e. Thus, it follows that
G* is a topological group with equal uniformities, and 7* is the smallest
topology containing 7 for which this is so.

If G is a locally compact connected group or a connected Lie group, then
G* is a locally compact group or a Lie group, respectively; see (1). However,
there are locally compact groups G such that G* is not locally compact (1).
The following theorem gives a specific example of how G and G* are related.
GL (n) is the group of non-singular # X » real matrices with the #? Euclidean
topology.

TueoreM 1. If G = GL(n), and V is a bounded neighbourhood of the identity,
then V* = V M\ Z, where Z is the centre of G.

Proof. Recall that Z = {cI: ¢ # 0}, where ¢ is a real number and 7 is the
identity matrix. We first prove the following result.

LeMMA. Let AB be a well-defined matrix product, where B is fixed and the
coordinates of A are allowed to vary. If B has a non-zero coordinate b,;, then we
can vary the coordinates of A to obtain an arbitrarily large number as the kj
coordinate of the product AB (k is any number such that AB has a kj coordinate).
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Proof. If ¢;; is the kj coordinate of AB, then ¢;; = >, axb;;. By setting
ar; = 0for ! # 7 and letting a;; be suitably large, we obtain the desired result.

The proposition is true for G = GL(1). Using induction, suppose that it is
true for » — 1, and consider G = GL(n). Let x € V* = NeetVt~!. Then
txt=t € V for all ¢ € G. In particular, this is true for any ¢ of the form

2]
0 |dz’

where A4, is an (r — 1) X (» — 1) matrix. Partitioning x the same way,

we obtain
1 |40 || XX |40
xt " =
0 | Qo Xa | X4 0 ] (12_1

_ [AIXIAI_I 1 A1X2(12_1:|
B -612X3A1—1 |a2X4a2_1 ’

By the induction hypothesis, since

o)

is isomorphic to GL(z — 1), it follows that X; = ¢1/. Now a» % 0, since ¢ is
non-singular. Thus, if X, has a non-zero coordinate, by letting 4, vary, we
can obtain an arbitrarily large coordinate in 4:X,a,=1. Since V is bounded,
X, = 0. Similarly, X3 = 0. Thus,

~[z12).

where Iisan (# — 1) X ( — 1) matrix. By a similar argument we show that

x_[&uL]
- O lCzI !

where I isan (z — 1) X (» — 1) matrix.

If we knew that » > 2, then we would have ¢; = ¢, and the proof would
be complete. In order to complete the induction argument, we must present
a separate proof that ¢; = ¢, in the case # = 2. Notice that

a b- C1 O:I[a b]—l_[cl bc‘l((:2—c1)] [a b] )
I:O CJ[O cdl0 ¢l1 Lo s for all 0 ¢ € GL(2).

If ¢1 # c¢2, then we can vary b to make bc1(c; — ¢1) large. Thus, ¢; = c.. We
have shown that V* C V N Z. It is now obvious that V* = VN Z.

Notice that this theorem tells us that if G = GL(n), then G* is one-
dimensional. The following statement undoubtedly follows directly. We
prove it, however, as a corollary to our theorem.

CoRrROLLARY. GL (1) has no non-finite normal compact subgroups.
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Proof. Let N be a compact normal subgroup of GL(»). Then by (1,
Lemma 1), the topologies of G and G* agree on N. Thus, there is a neighbour-
hood of the identity in N which is contained in Z. However, N N\ Z C {1},
and thus N is discrete, and hence finite.

More generally, we have the following two theorems which state that
either G = G* or there is quite a difference between them.

THEOREM 2. Either G = G¥*, or there is a neighbourhood of e in G* which s
first category in G.

Proof. If V is a closed symmetric neighbourhood of ¢ in G, then V* is closed
in G, and hence V* is almost open (3, p. 211). Now, if V* is second category,
then (V*)%isopenin G (3). Since { (V*)%: V a closed symmetric neighbourhood
of e in G} is a basis at e for the topology of G*, it follows that G = G¥, or
some such V* is first category in G.

THEOREM 3. If G is second category, and V is a compact neighbourhood of e,
then the subgroup generated by V* is either first category in G or open in G.

Proof. (V*)" is compact in G for each n, and therefore closed. Thus, the
subgroup generated by V* is a Borel set, hence almost open in G (3). Thus,
the subgroup is either first category in G or open in G.

COROLLARY. If G* is locally compact, then the identity component of G* is
either first category in G or it is the identity component in G.

Proof. The identity component of a locally compact group is the intersection
of the open subgroups.

We now prove several results which establish sufficient conditions for a
group to have equal uniformities.

THEOREM 4. If H is a subgroup of G, and H has equal uniformaities, then so
does H.

Proof. H has a basis at e of neighbourhoods U such that U = M ey tUt.
For any such U, it is not hard to show that U is a neighbourhood of e in H,
and U = N g tU L. Thus, {U} will form a basis at ¢ in H, and the proof is
complete.

THEOREM 5. If G = 11, G., and each G, has equal uniformities, then G has
equal uniformaties.

Proof. For each a, let po: G — G, be the natural projection p.(g) = ga,
where ¢ = (ga). If U. is a neighbourhood of ¢ in G, such that Us = M seq,tUat™,
then p,(gpa 1 (Ua)g™!) = gaUasgat = U, for all g € G, and thus p,~1(U,) =
Nyee gPa—1(U.)g™ L. Since sets of the form po~1(U,), where Ux = M e tUat™,
form a subbasis for the topology of G, it follows that G has equal uniformities.
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COROLLARY. If {G,} s an inverse system of groups such that each G. has
equal uniformities, and G is the projective limit of this system, then G has equal
uniformities.

Proof. G C 11, G.. Thus, by Theorem 5, G has equal uniformities.

The next theorem is closely related to the above corollary in the case G is
locally compact.

THEOREM 6. If G has arbitrarily small closed normal subgroups H such that
G/H has equal uniformaties, then G has equal uniformities.

Proof. Let U be a neighbourhood of ¢ in G and pick a neighbourhood V of
e such that V2 C U. Let H C TV be a closed normal subgroup such that G/H
has equal uniformities. Then N e tU D Niea tVAT D Niee tVHEL Since
G/H has equal uniformities, this last set is a neighbourhood of ¢ in G. Thus,
G has equal uniformities.

If a group G has equal uniformities, and H is a normal subgroup, then
both H and G/H have equal uniformities. The converse is not true in general.
For example, even a semi-direct product of groups with equal uniformities
may fail to have equal uniformities. Let G be the semi-direct product of the
plane R? by the circle group C where the automorphism of R? induced by
e € (Cisa rotation of R? through an angle 6. G is a locally compact connected
group with trivial centre. It follows that G cannot be isomorphic to the direct
product of a vector group and a compact group, and thus G fails to have
equal uniformities, even though R? is abelian and C is compact.

The following theorem is related to (1, Theorem 3 and its corollaries).
R denotes the additive real numbers.

TarEOREM 7. If R is a closed normal subgroup of G and G/R is compact, then
G has equal uniformities.

Proof. We first prove a lemma.

LemMA. If G is locally compact, R a closed normal subgroup such that R has
a compact nesghbourhood U of e which is invariant under the inner automorphisms
of G, then the centralizer Z(R) of R in G has index 2 in G.

Proof. Takea € U, g € G, a > 0, and consider the sequence a, = |ga,—1g7"|.
This is a monotone sequence, and we may assume that it is increasing. Thus,
it converges to 8 € U, 8 > 0. Now |gB¢g~!| = lim |ga,g~!| = B, and therefore
either gBg~! = B or gBg~! = —pB. It follows that gag™! = aor gag™! = — « for
all @ € R. Thus, we have proved our lemma.

Now suppose that G/R is compact. Then G = U - R, where U is a compact
neighbourhood of e. Let ¥ be any neighbourhood of zero in R. Then
NtV = Nep tVEL, which is a neighbourhood of zero, since U is
compact. Thus, we can apply our lemma, and Z(R) is an open subgroup of
index 2. It follows easily that G has equal uniformities.
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This last theorem generalizes (2, Proposition 12.2, part (v)).

THEOREM 8. If G s locally compact, and G is mapped by a continuous iso-
morphism into a group G, with equal uniformities, then G has equal uniformities
if either one of the following conditions holds:

(1) G s generated by a compact neighbourhood of e;

(2) G has a compact neighbourhood U of e such that U* = U.

Proof. Part (1). Let U be a compact neighbourhood of e which generatesG.
Let V be any open neighbourhood of e such that V' C U. Now, if ¢ is the
continuous isomorphism of G into Gi, then ¢|U? is a homeomorphism onto
¢(U?). Thus, ¢(V) is open in ¢ (U?). Therefore, there is a neighbourhood W
of e in Gy such that WM ¢(U?) = ¢(V). Let N be a neighbourhood of ¢ in G;
such that N C W and N = N cq tNtL. Finally, let Vo= VN ¢ 1(N).
Thus, V is a neighbourhood of e in G. If x € Vyand ¢ € U, then txt~! € U3,
hence, ¢(txt™1) € ¢(U) NN C o (U3) "W = ¢(V). Thus, txt™' € VN
¢~1(N) = V,. Since U generates G, it follows that for any ¢ € G, x € V,,
that txi=! € V. Thus, Vo = V¥, and G has equal uniformities.

Proof. Part (2). Let U be a compact neighbourhood of e such that U = U¥*,
and let 7 be any neighbourhood of e which is contained in U. The isomorphism
¢ of G into G; is a homeomorphism when restricted to U. Thus, we can pick a
neighbourhood W of e in G; such that WM ¢(U) C ¢(V) and W =
N ey tWEL Then for any ¢t € G,

o(VE) = ¢()e(V)d()7 D o)W N s(W)]o ()™ = W N $(V).

Thus, V* D ¢~ (W M ¢(U)), and this is a neighbourhood of e in G. Thus, G
has equal uniformities.
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