Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T14:41:09.882Z Has data issue: false hasContentIssue false

Spectra of infinite graphs via freeness with amalgamation

Published online by Cambridge University Press:  03 October 2022

Jorge Garza-Vargas*
Affiliation:
Department of Mathematics, University of California, Berkeley, Berkeley, CA, USA e-mail: akulkarni@berkeley.edu
Archit Kulkarni
Affiliation:
Department of Mathematics, University of California, Berkeley, Berkeley, CA, USA e-mail: akulkarni@berkeley.edu

Abstract

We use tools from free probability to study the spectra of Hermitian operators on infinite graphs. Special attention is devoted to universal covering trees of finite graphs. For operators on these graphs, we derive a new variational formula for the spectral radius and provide new proofs of results due to Sunada and Aomoto using free probability.

With the goal of extending the applicability of free probability techniques beyond universal covering trees, we introduce a new combinatorial product operation on graphs and show that, in the noncommutative probability context, it corresponds to the notion of freeness with amalgamation. We show that Cayley graphs of amalgamated free products of groups, as well as universal covering trees, can be constructed using our graph product.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accardi, L., Ghorbal, A. B., and Obata, N., Monotone independence, comb graphs and Bose–Einstein condensation . Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7(2004), no. 3, 419435.CrossRefGoogle Scholar
Accardi, L., Lenczewski, R., and Sałapata, R., Decompositions of the free product of graphs . Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(2007), no. 3, 303334.CrossRefGoogle Scholar
Anderson, G. and Zeitouni, O., A law of large numbers for finite-range dependent random matrices . Comm. Pure Appl. Math. 61(2008), no. 8, 11181154.CrossRefGoogle Scholar
Anderson, G. W., Preservation of algebraicity in free probability. Preprint, 2014. arXiv:1406.6664 Google Scholar
Angel, O., Friedman, J., and Hoory, S., The non-backtracking spectrum of the universal cover of a graph . Trans. Amer. Math. Soc. 367(2015), no. 6, 42874318.CrossRefGoogle Scholar
Aomoto, K., Algebraic equations for green kernel on a tree . Proc. Japan Acad. Ser. A Math. Sci. 64(1988), no. 4, 123125.CrossRefGoogle Scholar
Aomoto, K., Point spectrum on a quasihomogeneous tree . Pacific J. Math. 147(1991), no. 2, 231242.CrossRefGoogle Scholar
Aomoto, K. and Kato, Y., Green functions and spectra on free products of cyclic groups . Ann. Inst. Fourier 38(1988), no. 1, 5985.CrossRefGoogle Scholar
Arizmendi, O., Cébron, G., Speicher, R., and Yin, S., Universality of free random variables: atoms for non-commutative rational functions. Preprint, 2022. arXiv:2107.11507 Google Scholar
Avni, N., Breuer, J., and Simon, B., Periodic Jacobi matrices on trees . Adv. Math. 370(2020), 107241.CrossRefGoogle Scholar
Banks, J., Garza-Vargas, J., and Mukherjee, S., Point spectrum of periodic operators on universal covering trees. Preprint, 2020. academic.oup.com/imrn/advance-article/doi/10.1093/imrn/rnab152/6354602 CrossRefGoogle Scholar
Belinschi, S., Bercovici, H., and Liu, W., The atoms of the free additive convolution of two operator-valued distributions. Preprint, 2020. arXiv:1903.09002 Google Scholar
Belinschi, S. T. and Bercovici, H., A new approach to subordination results in free probability . J. Anal. Math. 101(2007), no. 1, 357365.CrossRefGoogle Scholar
Belinschi, S. T., Mai, T., and Speicher, R., Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem . J. Reine Angew. Math. 2017(2017), no. 732, 2153.CrossRefGoogle Scholar
Benjamini, I. and Schramm, O., Recurrence of distributional limits of finite planar graphs . Elec. J. Probab. 6 (2001). https://doi.org/10.1214/ejp.v6-96 CrossRefGoogle Scholar
Biane, P., Processes with free increments . Math. Z. 227(1998), no. 1, 143174.CrossRefGoogle Scholar
Bordenave, C. and Collins, B., Eigenvalues of random lifts and polynomials of random permutation matrices . Ann. Math. 190(2019), no. 3, 811875.CrossRefGoogle Scholar
Cartwright, D. I. and Soardi, P. M., Random walks on free products, quotients and amalgams . Nagoya Math. J. 102(1986), 163180.CrossRefGoogle Scholar
Davidson, K. R., C*-algebras by example , Fields Institute Monographs, 6, American Mathematical Society, Providence, RI, 1996.CrossRefGoogle Scholar
Figà-Talamanca, A. and Steger, T., Harmonic analysis for anisotropic random walks on homogeneous trees, Memoirs of the American Mathematical Society, 531, American Mathematical Society, Providence, RI, 1994.CrossRefGoogle Scholar
Friedman, J., Some geometric aspects of graphs and their eigenfunctions . Duke Math. J. 69(1993), no. 3, 487525.CrossRefGoogle Scholar
Friedman, J. and Kohler, D., On the relativized Alon second eigenvalue conjecture I: main theorems, examples, and outline of proof. Preprint, 2019. arXiv:1911.05688 Google Scholar
Godsil, C. D. and Mohar, B., Walk generating functions and spectral measures of infinite graphs . Linear Algebra Appl. 107(1988), 191206.CrossRefGoogle Scholar
Gouëzel, S. and Lalley, S. P., Random walks on co-compact Fuchsian groups . Ann. Sci. Éc. Norm. Supér. 46(2013), 131175.CrossRefGoogle Scholar
Greenberg, Y., On the spectrum of graphs and their universal covering. Ph.D. thesis, Hebrew University, 1995.Google Scholar
Haagerup, U. and Larsen, F., Brown’s spectral distribution measure for $R$ -diagonal elements in finite von Neumann algebras . J. Funct. Anal. 176(2000), no. 2, 331367.CrossRefGoogle Scholar
Hall, C., Puder, D., and Sawin, W. F., Ramanujan coverings of graphs . Adv. Math. 323(2018), 367410.CrossRefGoogle Scholar
Helton, J. W., Mai, T., and Speicher, R., Applications of realizations (aka linearizations) to free probability . J. Funct. Anal. 274(2018), no. 1, 179.CrossRefGoogle Scholar
Hoory, S., A lower bound on the spectral radius of the universal cover of a graph . J. Combin. Theory Ser. B 93(2005), no. 1, 3343.CrossRefGoogle Scholar
Hora, A. and Obata, N., Quantum probability and spectral analysis of graphs. Theor. Math. Phys. (2007). https://doi.org/10.1007/3-540-48863-4 Google Scholar
Huang, B. and Rahman, M., On the local geometry of graphs in terms of their spectra . European J. Combin. 81(2019), 378393.CrossRefGoogle Scholar
Jekel, D., Operator-valued non-commutative probability. Preprint, 2018. https://www.math.ucla.edu/davidjekel/projects.html Google Scholar
Keller, M., Lenz, D., and Warzel, S., On the spectral theory of trees with finite cone type . Israel J. Math. 194(2013), no. 1, 107135.CrossRefGoogle Scholar
Keller, M., Lenz, D., and Warzel, S., An invitation to trees of finite cone type: random and deterministic operators . Markov Process. Related Fields 21(2015), 557574.Google Scholar
Kesten, H., Symmetric random walks on groups . Trans. Amer. Math. Soc. 92(1959), no. 2, 336354.CrossRefGoogle Scholar
Kollár, A. J., Fitzpatrick, M., Sarnak, P., and Houck, A. A., Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics . Commun. Math. Phys. 376(2019), 19091956.CrossRefGoogle Scholar
Lalley, S. P., Random walks on regular languages and algebraic systems of generating functions . Contemp. Math. 287(2001), 201230.CrossRefGoogle Scholar
Lehner, F., Computing norms of free operators with matrix coefficients . Amer. J. Math. 121(1999), no. 3, 453486.CrossRefGoogle Scholar
Lubotzky, A., Phillips, R. S., and Sarnak, P., Ramanujan graphs . Combinatorica 8(1988), 261277.CrossRefGoogle Scholar
Marcus, A., Spielman, D. A., and Srivastava, N., Interlacing families I: Bipartite Ramanujan graphs of all degrees . Ann. Math. 182(2015), 307–325.Google Scholar
McKay, B. D., The expected eigenvalue distribution of a large regular graph . Linear Algebra Appl. 40(1981), 203216.CrossRefGoogle Scholar
McLaughlin, J. C., Random walks and convolution operators on free products. Ph.D. thesis, New York University, 1988.Google Scholar
Mingo, J. A. and Speicher, R., Free probability and random matrices, Fields Institute Monographs, 35, Springer, New York, 2017.CrossRefGoogle Scholar
Mohanty, S. and O’Donnell, R., X-Ramanujan graphs . In: Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms, SIAM, Philadelphia, PA 2020, pp. 12261243.CrossRefGoogle Scholar
Mohar, B., Tree amalgamation of graphs and tessellations of the cantor sphere . J. Combin. Theory Ser. B 96(2006), no. 5, 740753.CrossRefGoogle Scholar
Muraki, N., Monotonic independence, monotonic central limit theorem and monotonic law of small numbers . Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4(2001), no. 1, 3958.CrossRefGoogle Scholar
Muraki, N., The five independences as quasi-universal products . Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2002), no. 1, 113134.CrossRefGoogle Scholar
Nagnibeda, T. and Woess, W., Random walks on trees with finitely many cone types . J. Theor. Probab. 15(2002), no. 2, 383422.CrossRefGoogle Scholar
Nica, A., Asymptotically free families of random unitaries in symmetric groups . Pacific J. Math. 157(1993), no. 2, 295310.CrossRefGoogle Scholar
Nica, A. and Speicher, R., Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
O’Donnell, R. and Xinyu, W., Explicit near-fully X-Ramanujan graphs . In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), IEEE, Piscataway, NJ, 2020, pp. 10451056.CrossRefGoogle Scholar
Obata, N., Quantum probabilistic approach to spectral analysis of star graphs . Interdiscip. Inf. Sci. 10(2004), no. 1, 4152.Google Scholar
Picardello, M. and Woess, W., Random walks on amalgams . Monatsh. Math. 100(1985), no. 1, 2133.CrossRefGoogle Scholar
Pimsner, M. and Voiculescu, D., K-groups of reduced crossed products by free groups . J. Operator Theory 8(1982), 131156.Google Scholar
Quenell, G., Combinatorics of free product graphs . Contemp. Math. 173(1994), 257257.CrossRefGoogle Scholar
Rao, N. R. and Edelman, A., The polynomial method for random matrices . Found. Comput. Math. 8(2008), no. 6, 649702.CrossRefGoogle Scholar
Serre, J.-P., Trees. In: Springer Monographs in Mathematics, Springer Science and Business Media, 2002. Translated by J. Stilwell.Google Scholar
Soardi, P. M., The resolvent for simple random walks on the free product of two discrete groups . Math. Z. 192(1986), no. 1, 109116.CrossRefGoogle Scholar
Speicher, R., On universal products. In: D. V. Voiculescu (ed.), Free Probability Theory, Vol. 12, Fields Institute Communications, 1997, pp. 257–266.Google Scholar
Speicher, R., Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Memoirs of the American Mathematical Society, 627, American Mathematical Society, Providence, RI, 1998.CrossRefGoogle Scholar
Speicher, R. and Woroudi, R., Boolean convolution . In: Free probability theory, Fields Institute Communications, 12, American Mathematical Society, Providence, RI, 1997, pp. 267279.Google Scholar
Stark, H. M. and Terras, A. A., Zeta functions of finite graphs and coverings . Adv. Math. 121(1996), no. 1, 124165.CrossRefGoogle Scholar
Sunada, T., Group  $C\ast$ -algebras and the spectrum of a periodic Schrödinger operator on a manifold . Canad. J. Math. 44(1992), no. 1, 180193.CrossRefGoogle Scholar
Sy, P. W. and Sunada, T., Discrete Schrödinger operators on a graph . Nagoya Math. J. 125(1992), 141150.CrossRefGoogle Scholar
Voiculescu, D., Symmetries of some reduced free product C*-algebras . In: H. Araki, C. C. Moore, S. Stratila and D. V. Voiculescu (eds.), Operator algebras and their connections with topology and ergodic theory, Springer, 1985, pp. 556588.CrossRefGoogle Scholar
Voiculescu, D., Addition of certain non-commuting random variables . J. Funct. Anal. 66(1986), no. 3, 323346.CrossRefGoogle Scholar
Voiculescu, D., The analogues of entropy and of Fisher’s information measure in free probability theory, I . Commun. Math. Phys. 155(1993), no. 1, 7192.CrossRefGoogle Scholar
Voiculescu, D., Operations on certain non-commutative operator-valued random variables . Astérisque 232(1995), no. 1, 243275.Google Scholar
Voiculescu, D. V., Dykema, K. J., and Nica, A.. Free random variables. Vol. 1, American Mathematical Society, Providence, RI, 1992.CrossRefGoogle Scholar
Woess, W., Nearest neighbour random walks on free products of discrete groups . Boll. Unione Mat. Ital. 5(1986), 961982.Google Scholar
Woess, W., Context-free languages and random walks on groups . Discret. Math. 67(1987), no. 1, 8187.CrossRefGoogle Scholar
Woess, W., Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, Cambridge, 2000.CrossRefGoogle Scholar