Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:44:34.152Z Has data issue: false hasContentIssue false

MOTION OF HYPERSURFACES BY CURVATURE

Published online by Cambridge University Press:  19 August 2015

MAT LANGFORD*
Affiliation:
Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany email mathew.langford@fu-berlin.de
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Andrews, B. and Langford, M., ‘Cylindrical estimates for hypersurfaces moving by convex curvature functions’, Anal. PDE 7 (2014), 10911107.CrossRefGoogle Scholar
Andrews, B. and Langford, M., ‘Two-sided non-collapsing curvature flows’, Ann. Sc. Norm. Super. Pisa Cl. Sci. , to appear.Google Scholar
Andrews, B., Langford, M. and McCoy, J., ‘Non-collapsing in fully non-linear curvature flows’, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 2332.CrossRefGoogle Scholar
Andrews, B., Langford, M. and McCoy, J., ‘Convexity estimates for hypersurfaces moving by convex curvature functions’, Anal. PDE 7 (2014), 407433.CrossRefGoogle Scholar
Andrews, B., Langford, M. and McCoy, J., ‘Convexity estimates for hypersurfaces moving by curvature functions’, J. Differential Geom. 99 (2015), 4775.CrossRefGoogle Scholar